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Abstract 

Current educational theories, such as Constructivism, are based on subjective principles which are 

open to interpretation and may result in wide variations in the quality of learning outcomes. 

Cognitive Load Optimization is a new quantitative, Science of Learning theory. Using this method, 

it is possible to define schemas (mental patterns of knowledge) with the quantitatively optimized 

minimum cognitive load which are the basis of instructional material development. Such materials 

represent the easiest possible learning paths. In one proof of concept experiment this new method 

was used to teach first year undergraduate mathematics to mature students in online mode. The 

pass rate and retention rates were both 100% and all learning objectives were met. Extensive 

evaluations strongly suggest that Cognitive Load Optimization can significantly improve teaching 

and learning outcomes in all STEM disciplines at all educational levels – primary and secondary 

school, college and university. 
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INTRODUCTION 

Teaching practices are based on learning theories that 
inform educators how students learn. There are different 
learning theories in use today such as Constructivism, 
Behaviorism and Cognitivism. The basis of 
constructivism is that each student constructs their own 
knowledge (Piaget, 1969). The Behaviorist approach is 
based on operant conditioning in which positive 
responses that are reinforced are strengthened and are 
likely to occur again (Skinner, 1950). Cognitivism is 
concerned with how information is received, organized, 
and stored (Happs, 1985). In addition to these theories of 
learning there exist a wide range of methods and 
approaches designed to facilitate the educational process 
such as variation theory (Cheng, 2016), cognitive maps 
(Diekhoff, 1983), semantic proximities (Nagy, 1984), 
closeness (Keppens, 2008), attributes (Klausmeirer, 
1992), coordinate concepts (Merrill, 1977; Meyer, 1985), 
structured relationships (Meyer, 1985), elaboration 
theory (Reigeluth, 1979), etc. However, all of these 
methods and techniques were developed in the 20th 
Century and are based on soft science principles. The use 
of the term “soft” is not pejorative because this type of 

science is concerned with human behavior which is 
complex. A soft science approach is useful for evaluating 
systems that are difficult to measure and hence is used 
in disciplines such as sociology, psychology, etc. Soft 
science is qualitative and based on guidelines that can be 
subjectively interpreted which may result in wide 
variations in both learning standards and outcomes. In a 
ten-year period over thirty units in a wide range of 
STEM subjects offered by seven nationally accredited 
institutions (two colleges, five universities, including a 
five-star teaching university) in two countries (Thailand 
and Australia) were evaluated. STEM subjects included: 
electrical principles, cyber security, programming, 
project management, mathematics, etc. In this study unit 
evaluation criteria included: pass and attrition rates, 
pedagogical quality, and value for money. Pedagogical 
quality was evaluated according to both the number of 
topics taught and the depth of treatment of each topic 
based on the Structure of the Observed Learning 
Outcome (SOLO) taxonomy (Biggs & Collis, 1982). 
Excluding pre-structural, this taxonomy consists of four 
levels with associated verbs as evaluation metrics: 
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3. Relational: Many interdependent elements i.e., 
explain, calculate, etc. 

2. Multi-structural: Several relevant elements i.e., 
list, define. 

1. Uni-structural: One relevant element. 

The goal of learning is to achieve level 3 (and above) 
which can be assessed by evaluation metrics such as 
explain, calculate etc. The final exam and unit content 
were evaluated according to the SOLO levels. For the 
analyzed units there were considerable variations in 
both pedagogical quality and pass rates. The pass rates 
of some units were consistently circa 100% but at the 
expense of academic quality, i.e., more complex topics 
were not taught and also assessments were based on 
SOLO level 2 metrics such as list, identify etc. In effect 
high pass rates are not necessarily an assurance of 
quality learning outcomes as they can be achieved by 
teaching and/or assessing at a lower SOLO level. Others 
units had a higher pedagogical standard but in one case 
pass rates were less than 30% (Maj, 2021a). The 
acceptance of low pass rates arguably places learning 
responsibility on students rather than how the teacher 
can facilitate better results. 

Educational research is important because of the 
decline in the uptake of STEM disciplines due in part to 
the perceived difficulty of these disciplines (IET, 2008). 
Attempts, such as fun activities and experimentally 
based teaching, to change this perception are reported to 
have been unsuccessful (Lyons, 2004). Within 
engineering education, five research areas have been 
identified including ‘Engineering Learning 
Mechanisms’ which are concerned with how to develop 
knowledge (Education, 2006). In America, the 2012 
President’s Council of Advisors on Science and 
Technology reported the need to adopt more empirically 
validated teaching practices for STEM disciplines 
(PCAST, 2012). 

Educational research faces complexities not found in 
the physical sciences (Berliner, 2002). A detailed analysis 
of six exemplar schools concluded (Holkner, 2008): 

“It is suggested that there is also a need for more 
‘scientific’ evidence of ‘what works in classrooms 
rather than more qualitative studies’”.  

Furthermore,  

“As a consequence, there is much criticism of 
educational research including that it lacks rigor, 
fails to produce cumulative findings, is 
theoretically incoherent, ideologically biased, 
irrelevant to schools, lacks the involvement of 
teachers, and is poorly communicated and 
expensive.” 

In order to address these problems global research 
programs in the science of learning were established. 

SCIENCE OF LEARNING 

The American National Science Foundation (NSF), 
Division of Behavioral and Cognitive Sciences 
established the Science of Learning (SoL) research 
agenda with the goals of transformative basic research to 
advance the SoL with the goal of optimized learning for 
all (NSF, 2017). A number of research questions were 
identified such as: “How does the structure of the learning 
environment impact rate and efficacy of learning? For 
example, how do timing, content, learning context, 
development time point, and type of engagement (e.g., active 
learning, group learning) impact learning processes and 
outcomes?” In order to translate SoL research into 
practical implementations the Deans for Impact defined 
six key questions with the associated cognitive 
principles and practical implications for the classroom 
(Impact, 2015). For example, research question #1, “How 
do students understand new ideas?” This is based on 
cognitive principles such as: “students learn new ideas by 
reference to ideas they already know.” Practical implications 
for the classroom include: “A well sequenced curriculum is 
important to ensure that students have the prior knowledge 
they need to master new ideas.” Within Australia the 
Science of Learning Research Centre (SLRC, n. d.) was 
established and developed twelve PEN principles i.e., 
Psychology, Education, Neuroscience. For example, 
PEN principle #1: “Written text and spoken text don’t mix.”  

Knowledge of how the brain works has been used to 
identify six learning strategies (spaced practice, 
interleaving, retrieval practice, elaboration, concrete 
examples, and dual coding) that can potentially optimize 
knowledge construction in the learning process 
(Weinstein, 2018). For example, learning strategy #2, 

Contribution to the literature 

• Current learning theories provide subjective guidelines that are open to interpretation. Students are 
guided to construct their own relational knowledge which may be incomplete or incorrect. 

• Cognitive load optimization (CLO) has a simple, quantitative metric for measuring cognitive load. Hence 
relational knowledge in the form of a schema can be optimally organized. This schema represents the 
easiest learning path and is given to the students. It is also the basis of instructional development and 
teaching. 

• CLO can result in significant improvements in learning outcomes in STEM subjects at all educational levels 
and represents a unique, alternative learning theory. 
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Interleaving (switching between topics while studying) 
has the application example of “After studying the 
peripheral nervous system for a few minutes, students can 
switch to the sympathetic nervous system and then to the 
parasympathetic system; next time, students can study the 
three in a different order, noting what new connections they 
can make between them.” 

These approaches to improving learning outcomes, 
based on psychology and neuroscience, whilst of value, 
are all qualitative. The NSF goal of SoL is optimized 
learning for all. Optimization can only be achieved if 
learning theory is quantitatively defined. A quantitative 
method is important because,  

“I often say that when you can measure what you 
are speaking about, and express it in numbers, 
you know something about it; but when you 
cannot measure it, when you cannot express it in 
numbers, your knowledge is of a meagre and 
unsatisfactory kind; it may be the beginning of 
knowledge, but you have scarcely, in your 
thoughts, advanced to the stage of science, 
whatever the matter may be.” (Thomson, 1889). 

COGNITIVE LOAD THEORY 

Cognitive Load Theory (CLT) is based on cognitive 
science principles that include: schema, Short-Term 
Memory (STM), Long-Term Memory (LTM), and 
Intrinsic Cognitive Load (ICL) (Bannert, 2002; Valcke, 
2002). Intrinsic Cognitive Load (ICL) is a measure of the 
complexity of the knowledge to be taught. A schema is a 
pattern of relationships between elements that confers 
understanding and is stored in LTM. The process of 
learning is the construction of schemas in LTM mediated 
by STM. However, STM (working memory) has only 
limited capacity and retention time and hence can easily 
be overloaded by material with a high ICL.  

By contrast LTM does not have these handicaps. ICL 
is a function of the number of elements and their 
relationships. In this context a useful learning taxonomy 
is the SOLO taxonomy because it can be used to rank 
learning outcomes according their relative ICL. 
Instructional material that is uni-structural (identify) 
and multi-structural (list) levels have low ICLs because 
they consist of few elements and interdependencies. 
However, these represent low-level learning i.e., 
memory little understanding. By definition relational 
knowledge consists of many interdependent elements 
that cannot be understood in isolation. Understanding 
an element depends upon understanding the context of 
pre-requisite elements (i.e., relationships). If 
instructional materials have missing elements, missing 
relationships and elements not in the correct sequence 
there are cognitive gaps that contribute to the ICL. The 
author submits that teaching based on such materials, 
with cognitive gaps and a high ICL, may force students 
to come to their own conclusions. The resulting student 

schema could therefore be incomplete, inconsistent and 
incorrect resulting in low pass rates – that is why 
students fail. In essence:  

Relational knowledge schema: 

• Many interdependent elements that cannot be 
understood in isolation i.e., high ICL 

• Potential cognitive gaps (missing elements and 
relationships, incorrect sequence of elements) 
exacerbate ICL 

• Overloads STM 

• Harder to teach and learn 

• Potentially lower pass rates 

By contrast, multi-structural knowledge schema: 

• Few elements and dependencies i.e., low ICL 

• Does not overload STM 

• Easier to teach and learn 

• Potentially higher pass rates 

The goal of learning is relational knowledge i.e., 
SOLO level 3, which means the student understands 
how something works hence can explain cause and effect 
based on the interdependent elements However, 
measuring ICL in CLT is problematic (de Jong, 2010). 
Organizing many interdependent elements, in a 
sequence from the simplest to the most complex and 
ensuring all elements and their relationships have been 
defined, is a quantitative combinatorial problem. To 
address this problem various Neural net models have 
been used to map relational knowledge. The five-layer 
semantic cognition model interconnects item, 
representation, relation, hidden and attribute (Thomas, 
2008). The Structured Tensor Analogical Reasoning 
(STAR) model employs vector-based arguments 
(Halford, 1998). However, not only are these complex 
methods that would be challenging to implement but, 
more importantly they do not solve the problem of 
combinatorial complexity. The goal of SoL is optimized 
learning for all. In order to meet this goal what is needed 
is a simple to use quantitative method for measuring ICL 
allowing the use of optimization methods that also 
solves the problem of combinatorial complexity. 

COGNITIVE LOAD OPTIMIZATION 

Cognitive Load Optimization (CLO) offers a simple, 
reliable metric for ICL that also solves the problem of 
combinatorial complexity. Hence it is possible to convert 
relational knowledge with a high ICL that overloads 
STM to knowledge with the lowest possible ICL with no 
cognitive gaps that does not overload STM. Finally, and 
importantly, it is a practical and easy to use method. 
There are three steps to the CLO method. 

Step 1: Construct the concept-attribute matrix and 
optimize for the minimum ICL: Identity and order all 
concepts, based on attributes, from simple to complex. 



Maj / A Practical New 21st Century Learning Theory 

 

4 / 11 

Construct a concept-attribute matrix and optimize 
(manually or algorithmically) to obtain the minimum 
ICL. ICL is number of attribute changes divided by the 
number of concepts the number of concepts. 

Step 2: Convert the concept-attribute matrix to a 
diagram, i.e., simplest possible schema which is given to 
students: From the concept-matrix a concept-attribute 
diagram is constructed which is in effect the simplest 
possible schema. This schema is the easiest learning path 
and is used as the basis of designing instructional 
materials, eLearning tools and teaching. The CLO 
schema is a diagram and hence allows students to 
concurrently observe concepts and their relationships. A 
key aspect of CLO is that the optimized schema is given 
to the students. By contrast in Constructivism students 
construct their own schema with the potential problems 
discussed above. 

Step 3: Schema is basis designing instructional 
materials, eLearning tools and teaching: Instructional 
materials and teaching based on this schema does not 
overload STM because each concept is presented 
sequentially to STM from the simplest to the most 
advanced in a logical, incremental sequence. Because of 
inheritance each attribute need only be taught once, but 
is reinforced by the subsequent concept thereby 
reinforcing existing knowledge. Learning new 
knowledge is therefore automatically contextualized. In 
effect CLO converts a complex relational knowledge 
schema with a high ICL to a relational knowledge 
schema with the lowest possible IC hence meeting the 
SoL goal of optimized learning for all. 

Implementation Example #1 - Mathematics 

Consider the sinusoidal form Asin(ωt±α). This 
equation has multiple interdependent attributes i.e., 
elements and hence a high ICL. 

Step 1: Construct the concept-attribute matrix and 
optimize for the minimum ICL 

For this equation identify all attributes i.e., degrees, 
radians, Amplitude (A), Lag/Lead (L), cycle period (ρθ) 
and cycle time (ωt). Attributes may have different 
characteristics – quantitative or qualitative (discrete or 
continuous), binary, multistate etc. In this example the 
attributes are only binary. Attributes define concepts. 
The objective is to order concepts, based on their 
attributes, into the simplest arrangement with the lowest 
ICL. With relatively small data sets, such as this one, 
optimization can be performed manually. For larger data 
sets optimization algorithms can be used. Illustratively, 
this example was optimized algorithmically resulting in 
possible arrangements from the highest ICL to the 
optimally minimum ICL. In this example the minimum 
ICL was found to be number of attribute changes (8) 
divided by the number of concepts the number of 
concepts (5) i.e., 1.6 (Table 1). 

These optimally ordered attributes define five 
equations representing five concepts based on the simple 
concept of a sine waveform (concept 0). Inheritance 
controls combinatorial complexity. Degrees and radians 
are the simplest attributes and would be taught first. 
Concept 1 has the attributes of degrees and radians. 
Concept 2 inherits these two attributes but has the 
additional attribute of Amplitude (A) i.e., a 
predecessor/successor relationship. Concept 3 has the 
same three attributes as concept 2 but with the additional 
attribute of Lag/Lead (L). Concept 3 is therefore defined 
by four attributes three of which were inherited. 
Branching occurs when advanced concepts do not have 
common attributes. The advanced concept 4 inherits 
four attributes (degrees, radians, A and L), however 
concept 5 only inherits three attributes (radians, A and 
L). In effect an attribute reversal for degrees because it is 
no longer applicable. Also concepts 4 and 5 diverge 
according to attributes (ρθ) and (ωt) which distinguish 
between the cycle period in angles (P) or time (T) i.e., x 
axis can be either θ or t. This divergence is more evident 
in the concept-attribute diagram. The ICL of this 
optimized matrix is 1.6. 

Step 2: Convert the concept-attribute matrix to a 
diagram i.e., simplest possible schema 

Using the optimized concept-attribute matrix, with 
the lowest possible ICL, construct the concept attribute 
diagram i.e., simplest possible schema, which is given to 
the students (Figure 1). 

Table 1. Concept attribute matrix-1 

Attribute Deg Rad A L pθ ωt 

Concept       
0. sine wave (prerequisite) 0 0 0 0 0 0 
1. y=sinθ 1 1 0 0 0 0 
2. y=Asinθ 1 1 1 0 0 0 
3. y=Asin(θ±L) 1 1 1 1 0 0 
4. y=Asin(pθ±L) 1 1 1 1 1 0 
5. y=Asin( ωt±L) 0 1 1 1 0 1 
ICL = 8/5 = 1.6       
 

 
Figure 1. Optimized schema-1 
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Step 3: Schema is basis designing instructional 
materials, eLearning tools and teaching 

The schema (Figure 1) represents the easiest learning 
path and is used for the development of instructional 
materials and teaching. 

Implementation Example #2 – Network Technology 

Hubs and switches are network technology devices. 
They have attributes that define their operation such as 
half-duplex, full-duplex, collision prevention 
mechanisms, etc. 

Step 1: Construct the concept-attribute matrix and 
optimize for the minimum ICL 

The ICL for the optimized matrix is attribute changes 
(5) divided by number of concepts (2) i.e., 2.5 (Table 2). 

Step 2: Convert the concept-attribute matrix to a 
diagram i.e., simplest possible schema 

A schema, based on the optimized matrix can be 
constructed and represents a logically structured 
teaching sequence from the simplest to the most complex 
concept, i.e., easiest learning sequence (Figure 2). 

Step 3: Schema is basis designing instructional 
materials, eLearning tools and teaching 

Both devices have common attributes: shared 
medium, transmit, receive, and broadcast. A hub has 
two unique attributes: collision prevention with the 
CSMA/CD protocol and half duplex. A switch has three 
unique attributes: collision prevention based on a MAC 
address table, unicast, and full duplex. Based on this 

optimized CLO schema eLearning tools (called State 
Model Diagrams - SMDs) can be developed for a hub 
and a switch. Illustratively, the single eLearning tool for 
a switch can be used to teach not only all common 
attributes (transmit, receive and broadcast) but also all 
unique attributes of a switch (Figure 3). The MAC 
address table establishes a direct connection between the 
transmitting PC to the receiving PC allowing unicast to 
occur. The diagram can also be used to explain full 
duplex.  

Importantly more advanced switch technologies, 
such as Virtual LAN (VLAN), EtherChannel, Spanning 
Tree Protocol (STP), etc., may be added to the concept-
attribute matrix. In effect the optimized schema may be 
used for teaching at secondary school level, but extended 
to teaching at higher levels such as college and 
undergraduate levels. 

CLO EVALUATIONS 

Published work has demonstrated that CLO is 
applicable to STEM disciplines in all educational sectors 
(school, college and university) and can result in 
significant improvements in learning outcomes. CLO 
has been successfully used in a wide range of STEM 
disciplines that include: engineering drawing, 
cybersecurity, project management, electrical principles, 
industrial applications of IT, network engineering, 
computer systems engineering, science, biomedical 
engineering, object-oriented programming, etc. and 
when fully implemented both the pass rates and 
retention rates were high (asymptotic to 100%) along 
with very high student satisfaction feedback (Maj, 2020). 

University Sector - Undergraduate 

Mathematics – statistical proof of concept analysis 

In a small, proof-of-concept experiment two topics 
sinusoidal form Asin(ωt±α) and simple navigation were 
taught based on two different learning methods – 
standard method and CLO – and the results evaluated. 
For both experiments data was statistically validated 
using the Analysis of Variance (ANOVA) model. Given 
the small sample sizes the Repeated Measures Mixed 
Models methods was also used. For the mathematics 
experiment learning was evaluated, without student 
access to study materials, by randomized questions at 
three ICL levels (1 low ICL, 2 medium ICL, 3 high ICL) 
representative of increasing levels of complexity. For 

Table 2. Concept attribute matrix-2 

Attribute 
Shared 

medium 
Trans Rec B/cast 

CSMA/ 
CD 

Half 
duplex 

MAC 
address table 

Unicast 
Full 

duplex 

Concept          
Hub 1 1 1 1 1 1 0 0 0 
Switch 1 1 1 1 0 0 1 1 1 
ICL=5/2=2.5          
 

 
Figure 2. Optimized schema-2 
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CLO based teaching there was a statistically significant 
improvement when comparing the question type 3 to 2 
and 3 to 1. In the navigation experiment learning was 
evaluated, without access to study materials, by 
randomized questions, at four ICL levels (1 low ICL, 2 
medium ICL, 3a high ICL and 3b higher level ICL) 
representative of increasing levels of complexity. For 
CLO based teaching there was a statistically significant 
improvement at level 3a with the level of significance 
increasing from 3a to 3b (Maj, 2020). In conclusion, the 
use of CLO improves learning outcomes at SOLO level 3 
i.e., relational knowledge. 

Mathematics unit – remote online learning 

A first-year engineering mathematics unit based on 
CLO was used to teach remote, online students. All the 
students were employed in professional roles hence 
working full time, studying part time (time poor) and 
mainly resident in developing countries with poor and 
sometimes unreliable internet connectivity. During the 
lectures students were restricted to using a simple text-
only chat line that could not be used to enter 
mathematical symbols. Commensurate with a first-year 
undergraduate level, all topics were taught to the 
standard required. Significantly there was zero attrition 
and all students passed. Feedback was sought from all 
participants by means of simple Likert based questions 
(scale 1 to 5) with the opportunity to provide comments. 
Every participant recorded a score of 5 (highest) for 
every question. Comments such as the following were 
received:  

“I found our Monday tutorial sessions to be the 
perfect blend of instructional teaching, 
challenging questions and most importantly 
thorough explanation. So far this math unit is the 
best unit I have ever been in ever, I thoroughly 
enjoy our teaching and methods with interaction 
to make sure we are all learning. I also really enjoy 
how you can keep students active in the topic to 
help learning, and not like many other teachers, 
including one I had to drop out recently, that just 
read the content and answer questions quite 
vaguely. I would personally love if you could 
teach more units or if XXX could possibly get 
other teachers to adopt your teaching curriculum 
method.” (Maj, 2018). 

Programming unit 

The CLO method has been evaluated as the basis of 
teaching introductory Object-Oriented Programming 
(OOP) to undergraduates. In this experiment 50% of the 
instructional material was rewritten based on CLO and 
taught on one campus and the standard material, based 
on Greenfoot, was used on two other campuses 
concurrently. Greenfoot is an integrated development 
environment with extensive educational resources that 
includes a prescribed textbook designed for teaching 
school children. Greenfoot has two high-level design 
goals – make programming engaging, creative and 
satisfying; help in teaching important universal 
programming concepts. The second high-level objective 
is concerned with supporting teaching with specific 
requirements that include avoiding cognitive overload 

 
Figure 3. eLearning tool for switch 
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(Kolling, 2010, 2016). However, a CLO analysis found 
the material to have a very high ICL. At the two 
campuses based 100% on Greenfoot, with cohort sizes of 
50 and 56, the pass rates were 28% and 27% respectively. 
At the third campus, with 50% of the unit material based 
on the CLO method, with a cohort size of 20 the pass rate 
was 45% representing a 60% improvement. It should be 
noted this was a double-blind experiment in which the 
CLO instructor did not know the final exam questions 
and did not mark the final exam papers. It is submitted 
that if all of the material was based on the CLO method 
the pass rate would have been asymptotic to 100% (Maj, 
2020). 

Network technology unit 

CLO was used as the basis of teaching graduate, 
overseas, onshore students enrolled on an MSc IT 
conversion course. The students were graduates in a 
range of non-IT disciplines such as Biology, Mechanical 
engineering etc. They were taught all the material from 
the Cisco Certified Network Associate (CCNA) award 
that was rewritten based on CLO and given 24 hours of 
face-to-face instruction including laboratory time. 
Leaning outcomes were evaluated against Cisco CCNA 
students who received over 100 hours of instruction. The 
learning outcomes of the postgraduate student cohort 
were significantly better than the Cisco based students 
and comparable to a qualified and experienced expert. 
Student learning of the CLO based cohort was evaluated 
six weeks after completion of their final exam. It was 
found that all students were able to correctly answer 
complex questions and answered them using the 
diagrammatic SMD method. It was noted that in most 
cases the diagrams were not identical to those taught. 
This is indicative that the students developed their own 
schema resident in long term memory (Maj et al., 2005). 

STEM for business students – remote online learning 

A degree in Business IT or IT management requires 
students to study units in STEM technical subjects such 
as computer and network technology, IT infrastructure, 
cybersecurity etc. Business students are unlikely to have 
an appropriate technical background. The challenge is 
not to make business students technical experts – this is 
neither desirable or possible. Rather the objective is to 
provide business students with sufficient technical 
knowledge appropriate to administrative/management 
roles in the workplace and the confidence to interact 
with discipline experts. Four STEM based business units 
(cybersecurity, cybersecurity management, information 
systems management, and management information 
systems) at two different universities in two different 
countries were analyzed and found the material was 
almost exclusively taught as technical lists with little or 
no explanations. Using CLO theory all four STEM based 
business units were analyzed and optimized as a 
sequence of three lectures (computer technology, 

network technology and security) that were remotely 
given to a cohort of 33 business students whose first 
language was not English. Verbatim comments 
regarding their previous experience learning STEM 
based subjects were all negative such as: “It doesn’t have 
explaining in each, how it works.” In response to the 
question would you remember what you were taught in 
three months’ time all comments were negative such as, 
“Not remember at all.” In conclusion 45% of students 
positively rated this method. By contrast 100% of the 
students rated the CLO method of teaching either very 
good or excellent. Furthermore, all verbatim comments 
were positive such as: “Able to understand the concept and 
how does it work. In this way you will be able to identify the 
issues when it happens because you are understand how does 
it work”. In response to the question, would you 
remember what you have been taught in three months’ 
time all verbatim comments were positive such as: “Sure, 
I prefer this method because I can have a full understanding. I 
like the way I can think of something not remember it”. This 
student comment is highly significant because it strongly 
suggests complex relational knowledge is likely to be 
resident in LTM – the goal of learning (Maj & 
Nuangjamnong, 2020).  

Perceptions of the use of CLO to teach STEM based 
subjects to business students was evaluated using the 
Technology Acceptance Model (TAM) and the Unified 
Theory of Acceptance and Use of Technology (UTAUT) 
frameworks. The results from a cohort of 210 
participants found that CLO would substantially 
improve their learning performance. (Nuangjamnong & 
Maj, 2022). 

College Sector 

The Cisco Network Academy is a global IT and 
cybersecurity education program with 9,000 Cisco 
accredited academies, 20,000 Cisco qualified instructors 
in 170 countries (Academy). Within the Australian 
college sector, the professional Cisco Certified Network 
Professional (CCNP) is often the basis of their Diploma 
award. The pre-requisite to the CCNP is the Cisco 
Certified Network Associate (CCNA) award. A cohort of 
students who were in the process of completing their 
CCNP award were given a one-hour tutorial on a single 
topic (Spanning Tree Protocol) using only the SMD 
eLearning tool. Feedback from these students was as 
follows:  

Student 1: Yes, I have learnt more in this (one 
hour) period than the whole of the semester. 

Student 2: Excellent, far clearer than any Cisco 
material. 

Student 3: Yes! the diagrams illustrate the process 
in a very easy to understand format to allow the 
subject to be learnt. 
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Student 4: Nice to have a conceptual model to aid 
understanding. 

Secondary School Sector 

CLO-based eLearning tools  

The efficacy of eLearning tools and technologies has 
been questioned. An analysis of the use of innovative 
learning technologies in exemplar schools found,  

“We know that after nearly five decades of 
computers in education there is still confusion 
about the use of technology in classrooms and 
widespread reluctance to move beyond tokenistic 
use. There is not a universal, shared vision 
regarding the use of technology in the classroom 
and teachers are confronted with an eclectic array 
of theories and instructional designs and 
bombarded with confusing, even romantic views 
of what the technology is capable of delivering. 
We also know that is it not possible to definitely 
establish a direct link between learning with 
technology and improved outcomes.” (Holkner et 
al., 2008). 

Based on the optimized schema, eLearning tools can 
be developed. The CLO derived eLearning tools for IT, 
called State Model Diagrams (SMDs), captures all the 
key learning concepts and their relationships 
diagrammatically and provides,  

“An overview of the entire network or increasing 
levels of detail may be obtained while maintaining 
links and interfaces between the different levels. 
Furthermore, SMDs allow technical detail to be 
introduced in an integrated and controlled 
manner, thereby supporting student learning at 
both introductory and advanced levels. In effect, 
as student’s progress they do not have to learn a 
new conceptual model; rather they can build upon 
and extend their existing knowledge.” (Maj & 
Veal, 2007).  

Hence, CLO derived eLearning SMDs support 
student learning at all educational levels. 

IT – proof of concept 

Within Australia a recommended textbook for 
teaching IT to 12–15-year-old students was analyzed for 
the topics of hub and switch (Grover & Winton, 2017). 
The material was found to have a high ICL. For example, 
according to the textbook,  

“Switches work by keeping a table of addresses 
for each connected device. Each device has its own 
network interface card (NIC) that is numbered 
with a media access control address, known as a 

MAC address. MAC addresses are also known as 
Ethernet addresses.”  

Cognitive gaps: How does a switch identify which 
device is on which interface? What is Ethernet? Ethernet 
not explained until later in the book. What devices use 
CSMA/CD? Both hub and switch? 

Teaching materials based on CLO eLearning State 
Model Diagram tools such as Figure 3 were used as the 
basis of teaching hub and switch technology to a cohort 
of 21 students that attended a one-day workshop. In this 
proof-of-concept experiment was independently 
monitored who concluded: Throughout the exercise 
students were fully engaged; learning occurred and did 
not exceed their abilities; all learning objectives were met 
(Maj, 2021b). 

IT – extended study 

CLO was used to develop instructional materials and 
evaluated by teaching a cohort of twenty 14-15-year-old 
students who attended nine one-day session on a 
university campus using a dedicated network teaching 
laboratory. The objective was to teach PC to PC 
connectivity on different networks via different LAN 
technologies (hub, switch, wireless). In this experiment 
students had to learn not only many different concepts 
and associated technologies but also how to connect, 
configure, test and fault find connectivity using PCs, 
hubs, switches, wireless access points and routers. This 
includes using the complex Command Line used for 
switches, wireless access points and routers. Instruction, 
practical exercises and learning evaluations were based 
on CLO schemas and associated CLO derived SMD 
eLearning tools which represent all attributes and 
concepts. They allowed knowledge to be represented 
with increasing or decreasing levels of detail whilst 
maintaining relational links. At the conclusion of the 
nine-week study, student learning as evaluated as 
follows: 

1. After configuring two PCs on the same network 
using a switch and wireless access point students 
were asked to complete blank SMDs for a switch 
and wireless access point.  

2. After configuring two PCs on the same network 
connected by either a hub, switch or wireless 
access point, students were asked to complete a 
blank SMD template. 

3. After configuring two PCs on different networks 
by a router using either hubs, switches or wireless 
students were asked to complete a blank SMD 
template. 

4. Provided with information from frame capture, 
students were asked to complete the associated 
SMD template. This was done for two PCs 
connected together on the same network and also 
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two PCs on different networks connected by a 
router. 

5. Provided with a partially competed SMD 
template, students were required to complete the 
diagram.  

6. Students were given questions such as, what does 
ARP stand for, why is it needed and how does it 
work? 

These questions were designed to evaluate relational 
knowledge, i.e., the ability to analyze and explain which 
is the objective of learning. For evaluations 1, 2, 3, 5, and 
6 all students scored 100%. However only two students 
successfully completed evaluation 4. Students found it 
difficult to both use frame capture and interpret the 
results. No evaluation was conducted to determine if 
knowledge was stored in LTM (Maj, 2021c). 

Primary School Sector 

Proof of concept – science education 

Australian textbooks for 12-to14 year old students 
were analyzed for the topic of energy (Thickett, 2012; 
Williamson, 2011, 2020). Using CLO it was found that 
this material has a high ICL and cognitive gaps. Based 
on the CLO method, a single optimized, extended 
abstract schema was created for the science of energy. 
Extended abstract is the highest SOLO level (i.e., 4) and 
represents learning that goes beyond the immediate 
concept making links to other concepts. The evaluation 
metrics are generalizing, predicting etc. According to 
Hattie (2004),  

“From multi-structural to relational. This involves 
more that ‘getting to know more about a topic or 
being adept at following through a sequence of 
procedures; it includes understanding or 
integrating what is known into a coherent system 
where the parts are inter-related. This inter-
relationship comes about as a result of an ability 
to form an over viewing principle which can be 
derived from the information given.  

From relational to extended abstract. This process 
requires dedicated hard work to master abstract 
concepts and relationships which allows the 
student to derive more generalized principles and 
transfer understanding to new tasks and 
situations.”  

To reiterate, current learning theories, such as 
Constructivism, provide materials and instruction in 
order to guide students to acquire, for example, 
relational knowledge i.e., an understanding based on a 
coherent system of inter-related parts. This may not only 
be inefficient but also potentially error prone i.e., trial 
and error learning. The resulting student schema's may 
be incomplete and/or incorrect.  In the case of acquiring 

extended abstract knowledge the problem is potentially 
compounded as this requires 'dedicated hard work' by 
students. By contrast, in the CLO method, instructional 
materials and teaching are based on optimized relational 
knowledge schema's which represent the easiest 
learning paths. The optimized schema's are given to 
students. In the CLO method learning then consists of 
internalizing the schema's. Likewise, CLO defines 
optimized extended abstract schema's (SOLO level 4) 
which are given to students. Hence this arguably does 
not require dedicated hard work by students. The CLO 
level 4 (extended abstract) schema: 

• Represents the easiest possible learning path, 

• Is applicable to all forms of energy i.e., transfer of 
understanding, 

• Learnt once but applied to all types of energy, 

• Contextualizes new concepts, and  

• Reinforces previously acquired knowledge.  

Using this schema and associated teaching materials, 
science concepts normally taught to 12–14-year-old 
students were successfully taught to an 8-year-old 
student. The schema was used to teach one type of 
Potential energy source (food, Joules) and the associated 
Kinetic energy conversion (motion, Joules per second). 
The same schema was used to include different types of 
potential energy (food, fuel, batteries etc.) and kinetic 
energy (motion, light etc.) and their relationship. The 
student had pre-requisite knowledge of concepts such as 
weight (g and kg), volume (l) etc., and the mathematical 
operations of division and multiplication. Further work 
is needed. Significantly this extended abstract schema 
can also be used to include and therefore contextualize 
other, more advanced, aspects of energy. For example, 
battery kinetic energy (Joules per second) can also be 
represented in terms of voltage and current (P=IV). A 
prerequisite would of course be to teach Ohm's Law. 

CONCLUSIONS 

In cognitive science, knowledge is represented by a 
schema resident in Long Term Memory. There are 
different categories of knowledge with relational 
knowledge conferring the ability to explain causes. In the 
learning theories in use today, the role of the teacher is 
to facilitate the acquisition of relational knowledge 
schemas. However relational knowledge is a complex 
chain of inter-related elements the complexity of which 
is called the Intrinsic Cognitive Load. During the 
learning process, missing elements or relationships may 
result in relational knowledge with a high cognitive load 
i.e., the schema is incomplete, inconsistent or incorrect. 
That is why students fail. The goal of the Science of 
Leaning is optimized learning for all, which can only be 
achieved using quantitative methods. In cognitive 
science, measuring cognitive load has proved 
problematic. Cognitive Load Optimization (CLO) 
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provides a simple quantitative metric for cognitive load 
and hence it is possible to define relational knowledge 
schemas that have the optimized minimum intrinsic 
cognitive load. This optimized schema represents the 
easiest learning path. Importantly this optimized schema 
is not only the basis of instructional development, 
teaching and the development of eLearning tools but it 
is given to students. A proof-of-concept experiment 
suggest that CLO can also model extended abstract 
knowledge – the highest SOLO level of knowledge. 
There is a body of published results indicative that CLO 
is applicable to STEM disciplines at all educational levels 
and when applied can result in significant 
improvements in learning outcomes. However, further 
work is needed. CLO offers an alternative approach to 
STEM educators. 
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