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ABSTRACT 
Crude oil price forecasting is one of the most important topics in the field of energy 
research. Accordingly, numerous methods such as statistical, econometrical and 
intelligent approaches are applied for crude oil price forecasting. In this paper, a typical 
competitive learning algorithm, support vector machine (SVM), is empirically 
investigated to verify the feasibility and potentiality of SVM in crude oil price 
forecasting. For this purpose, five different prediction models, feed-forward neural 
networks (FNN), auto-regressive integrated moving average (ARIMA) model, fractional 
integrated ARIMA (ARFIMA) model, Markov-switching ARFIMA (MS-ARFIMA) model, 
and random walk (RW) model are used in the study. Experimental results obtained 
show that the SVM model outperforms the other five methods, implying that it is a 
fairly good candidate for crude oil price forecasting in terms of either one-step 
prediction or multi-step prediction. 

Keywords: support vector machines, artificial neural networks, ARIMA model, ARFIMA 
model, Markov-switching ARFIMA model 

 

INTRODUCTION 
The sharp increase in crude oil price between 2004 and 2008, has resulted in problems related to high volatility in 
oil prices receiving much attention. Usually, high crude oil price influences not only macro-economic development 
but also quality of human lives. Prediction of future crude oil price can help neutralize, to some extent, impact of 
fluctuations on macro- and microeconomics. However, crude oil price forecasting is not an easy task due to the fact 
that crude oil price is formulated by complex factors that have several interactive effects between themselves. As 
Zhang et al. (2008) revealed, three main types of factors (short-term, medium-term, and long-term) affect crude oil 
price volatility, which has the characteristics of complex nonlinearity, dynamic volatility and high irregularity 
(Watkins and Plourde, 1994). Unfortunately, the fundamental mechanism governing the complex dynamics in 
crude oil markets is not well understood by human beings (Yu et al., 2008). In a sense, crude oil price forecasting is 
still a rather challenging task for both academia and practitioners. 

In the past decades, some attempts have been made for exploring the crude oil price dynamics. Some statistical-
based models have been widely used for crude oil prices forecasting. Typical models include the probabilistic 
model (Abramson and Finizza, 1995), econometric structural models (Huntington, 1994; Ye et al., 2002, 2005, 2006), 
co-integration analysis (Gulen, 1998), vector auto-regression models (VAR) (Mirmirani and Li, 2004), error 
correction models (ECM) (Lanza et al., 2005), auto-regressive integrated moving average (ARIMA) (Yu et al., 2008) 
and semi-parametric approach based on GARCH properties (Morana, 2001). Usually, these models can provide 
good prediction results when the crude oil price series under study is linear or near linear. However, in real-world 
crude oil price series, there is a great deal of nonlinearity and irregularity. Numerous experiments have 
demonstrated that the prediction performance might be very poor if one continued using these traditional statistical 
and econometric models (Weigend and Gershenfeld, 1994). The main reason leading to this phenomenon is that 
most statistical-based models are built on linear assumptions and they cannot capture the nonlinear patterns hidden 
in the crude oil price series. 
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For these reasons, some nonlinear models (e.g., Panas and Ninni, 2000), especially the emerging artificial 
intelligence (AI) models, are used for crude oil price forecasting. Among AI models, artificial neural networks 
(ANNs) are often regarded as a class of reliable and cost-effective methods for crude oil price prediction. The neural 
network model, particularly the multi-layer feed-forward neural network (FNN), can be trained to approximate 
any smooth and measurable nonlinear function without prior assumptions on the original data (Yu et al., 2007b; 
Lee & Lee, 2016); it has produced many promising results in this field (Kaboudan, 2001; Mirmirani and Li, 2004; 
Wang et al., 2004, 2005; Shambora and Rossiter, 2007; Yu et al., 2007a, 2008, Chou, 2016). These studies have shown 
that ANN models are very effective in simulating and describing the dynamics of non-stationary time series due to 
its unique non-parametric, noise-tolerant and highly adaptive characteristics. 

However, the inherent drawbacks of ANN models, e.g., local minima, over-fitting, poor generalization 
performance and the difficulty of determining appropriate network architectures, hinder practical applications of 
ANN models. Support vector machines (SVMs), first proposed by Vapnik (1995), provide a class of competitive 
learning algorithms to improve generalization performance of neural networks and achieve global optimum 
solutions simultaneously. SVMs are a very specific type of learning algorithms characterized by the capacity control 
of the decision function, use of kernel functions, and sparsity of the solution (Vapnik, 1995, 1999; Cristianini and 
Taylor, 2000). Established on the unique theory of the structural risk minimization (SRM) principle to estimate a 
function by minimizing an upper bound of the generalization error, SVM is resistant to the over-fitting problem 
and can simulate nonlinear relations in an efficient and stable way. This property leads to a better generalization 
than conventional methods. Furthermore, SVMs are trained as a convex optimization problem, resulting in a global 
solution that in many cases yields unique solutions. Initially, SVMs were developed for classification tasks. With 
introduction of the ε-insensitive loss function, SVMs have been extended to solve nonlinear regression and time 
series prediction problems, and have exhibited excellent performance (Muller et al., 1997; Vapnik et al., 1996; Cao 
and Tay, 2001; Tay and Cao, 2001a, 2001b, 2002).  

The main purpose of this study is not to propose a new SVM-based machine learning algorithm but to present 
an empirical study of application of the SVM model to crude oil price time series prediction, so as to investigate the 
potentiality of SVM in crude oil price forecasting. For this purpose, five different models - feed-forward neural 
network (FNN) model, auto-regressive integrated moving average (ARIMA) model, fractional integrated ARIMA 
(ARFIMA) model, Markov-switching ARFIMA (MS-ARFIMA) model, and random walk (RW) model - are 
examined in the study. The rest of the article is organized as follows. Section 2 describes the SVM-based method 
for crude oil price prediction. In order to evaluate the potentiality of SVM in crude oil price forecasting, an empirical 
study and its computational results are reported in Section 3. Section 4 concludes the article. 

SVM-BASED CRUDE OIL PRICE FORECASTING APPROACH 
In this section, the overall process of formulating the SVM-based crude oil price forecasting paradigm is 

presented. First, the theory of SVM for regression tasks is introduced, and then the SVM-based crude oil price time 
series prediction method is proposed. 

Theory of SVM Regression 
Support vector machines (SVMs) have originally been proposed for classification purposes but their principles 

can be extended to regression and time series prediction problems as well. In this paper, we only focus on support 
vector regression (SVR) for time series prediction. Excellent general descriptions of SVMs, including support vector 
classification (SVC) and support vector regression (SVR), can be found in Vapnik (1995, 1998), Burges (1998), and 
Cristianini and Taylor (2000). 

Basically, SVR is a linear learning machine. That is, a linear function is always used to solve the regression 
problems. When dealing with nonlinear regression, SVR first maps the original data x into a high-dimensional 
feature space via a nonlinear mapping function φ and then makes linear regression in this high-dimension feature 
space. Usually, the SVM regression function can be formulated as follows 

Contribution of this paper to the literature 

• The empirical results find that among different forecasting models used for the two main crude oil price 
series (WTI crude oil price and Brent crude oil price), in terms of different criteria, the SVM-based 
forecasting model performs the best. In all testing cases, RMSE is the lowest and Dstat is the highest, 
indicating that the SVM-based forecasting approach can provide a promising alternative and offers 
advantages in crude oil price time. 

• Application of the SVM method in crude oil price forecasting is a good and interesting attempt and it may 
be worth testing its utility in other fields also. We will look into these issues in the future. 
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 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑤𝑤 ⋅ 𝜑𝜑(𝑥𝑥) + 𝑏𝑏 (1) 
where 𝜑𝜑(𝑥𝑥) is called the nonlinear feature space mapped from input space 𝑥𝑥 and 𝑦𝑦 is the estimated value in terms 
of input data 𝑥𝑥. Coefficients 𝑤𝑤 and 𝑏𝑏 are estimated by minimizing 

 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶) = 𝐶𝐶 ⋅
1
𝑁𝑁�𝐿𝐿𝜀𝜀(𝑑𝑑𝑖𝑖 , 𝑦𝑦𝑖𝑖)
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 𝐿𝐿𝜀𝜀(𝑑𝑑𝑖𝑖 , 𝑦𝑦𝑖𝑖) = �|𝑑𝑑 − 𝑦𝑦| − 𝜀𝜀, |𝑑𝑑 − 𝑦𝑦| ≥ 𝜀𝜀,
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.  (3) 

where 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 is the regularized risk function, 𝑑𝑑𝑖𝑖 is the actual value in the 𝑖𝑖th period, and 𝐶𝐶 and ε are user-specified 
parameters. In Eq. (2), the first term (𝐶𝐶/𝑁𝑁)∑ 𝐿𝐿ε(𝑑𝑑𝑖𝑖 ,𝑦𝑦𝑖𝑖)𝑁𝑁

𝑖𝑖=1  is the empirical error (risk), measured by the ε-insensitive 
loss function given by Eq. (3). This loss function provides the advantage of enabling one to use sparse data points 
to represent the regression function defined by Eq. (1). The second term, (1/2)‖𝑤𝑤‖2, is the regularization term, 
which measures the flatness of the function. 𝐶𝐶 is referred to as the regularized constant and it determines the trade-
off between empirical risk and the regularization term. Increasing the value of 𝐶𝐶 will result in relatively higher 
importance of the empirical risk and vice versa. ε is called the tube size, and it is equivalent to the approximate 
accuracy placed on the training data points. Introducing the positive slack variables 𝜉𝜉 and 𝜉𝜉∗, which represent the 
distance from the actual values to the corresponding boundary values of ε-tube. For this setting, Eq. (2) can be 
transformed into the following optimization problem 
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Subject to: 𝑤𝑤 ⋅ 𝜑𝜑(𝑥𝑥𝑖𝑖) + 𝑏𝑏𝑖𝑖 − 𝑑𝑑𝑖𝑖 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖∗

𝑑𝑑𝑖𝑖 − 𝑤𝑤 ⋅ 𝜑𝜑(𝑥𝑥𝑖𝑖) + 𝑏𝑏𝑖𝑖 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖
𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖∗ ≥ 0, for all 𝑖𝑖 = 1,2,⋯ ,𝑁𝑁.

 (4) 

By introducing Lagrangian multipliers and maximizing the dual function of (4), the (4) can be changed into the 
following dual form 
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0 ≤ 𝜆𝜆𝑖𝑖 ≤ 𝐶𝐶,
0 ≤ 𝜆𝜆𝑖𝑖∗ ≤ 𝐶𝐶,
for all 𝑖𝑖 = 1,2,⋯ ,𝑁𝑁.

 (5) 

In Eq. (5), 𝜆𝜆𝑖𝑖 and 𝜆𝜆𝑖𝑖∗ are called Lagrangian multipliers, which satisfy the equality λ𝑖𝑖 ⋅ λ𝑖𝑖∗ = 0. Finally, the solution 
of the original problem can be represented as below: 

 𝑓𝑓(𝑥𝑥, 𝜆𝜆𝑖𝑖 ,𝜆𝜆𝑖𝑖∗) = �(𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑖𝑖∗)
𝑀𝑀

𝑖𝑖=1

𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) + 𝑏𝑏 (6) 

In Eq. (6), K(•) is the so-called kernel function which simplifies the use of a mapping. Representing the mapping 
by simply using a kernel is called the kernel trick, and the problem is reduced to finding kernels that identify 
families of regression formulae. It can be shown that any symmetric kernel function K(•) satisfying Mercer’s 
condition corresponds to a dot product in some feature spaces (Vapnik, 1995). The most used kernel functions are 
the Gaussian RBF with a width of σ: 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = exp(‖𝑥𝑥 − 𝑥𝑥𝑖𝑖‖ 2σ2⁄ ), and the polynomial kernel, with an order of d 
and constants a1 and a2, represented as 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = (𝑎𝑎1𝑥𝑥𝑥𝑥𝑖𝑖 + 𝑎𝑎2)𝑑𝑑. 

SVM-based Crude Oil Price Time Series Forecasting 
Since time series prediction can be seen as an auto-regressive process in time, a regression method can be used 

for this task. When time series prediction is conducted by SVMs, input vector {𝒙𝒙} to the SVM is a finite set of 
consecutive measurements of the series 𝒙𝒙 = (𝑥𝑥(𝑡𝑡), 𝑥𝑥(𝑡𝑡 − 1), … , 𝑥𝑥(𝑡𝑡 − 𝑠𝑠)), with time-delay 𝑠𝑠, which is a sliding 
window for the input vector. The output of the regression is 𝑥𝑥(𝑡𝑡 + ℎ) where ℎ is the prediction horizon and it is a 
user-specified parameter. The procedure of developing a SVM-based time series prediction is illustrated in Figure 
1. 
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As can be seen from Figure 1, the procedure of SVM-based time series prediction model can be divided into 
four phases, briefly described as follows.  

Phase I: Data Sampling. In situations where there are vast volumes of data to sift through, a process called data 
sampling can help minimize data processing and significantly reduce computational costs. Data sampling is a 
process whereby a statistically representative portion of the information is examined to determine if it contains 
responsive data. Using data sampling can help narrow the research focus, for example, by determining whether 
there are time periods in which relevant events do not exist; this makes it unnecessary to process or review that 
particular part of the data set. To develop a SVM-based model for forecasting, different data should be collected, 
and data collected from various sources must be selected in terms of some specific criteria. 

For crude oil price, there are a variety of data used for this research. West Texas Intermediate (WTI) and Brent 
crude oil prices are two main crude oil price benchmarks. From the viewpoint of data type, spot prices and futures 
prices are available. From the point of data frequency, daily, weekly, monthly, quarterly, and yearly data can be 
used. The main purpose of data sampling is to select a representative data for further processing and analysis. 

Phase II: Data Preprocessing. After data sampling, the next task is data preprocessing. It includes two steps: 
data normalization and data division. In any model development process, familiarity with the available data is of 
the utmost importance. SVM models are no exception. Data normalization can have a significant effect on SVM 
model’s performance. After that, normalized data should be divided into two subsets: in-sample data and out-of-
sample data, to be used for model estimation and model evaluation and verification respectively.  

Phase III: SVM Training. After the data is preprocessed, SVM training can be performed using the processed 
data. In this phase, there are three main tasks: determination of SVM input vector, sample learning, and model 
validation. Usually, the SVM input vector is determined by time-delay s via the trial and error method. In sample 
learning, regularization constant C, suitable kernel functions K(•), and associated kernel parameters in kernel 
functions should be determined. Often they are determined by trial and error because there are no universal criteria 
for deciding the parameters. As an alternative, some search-based methods, such as grid search and direct search 
methods, can also be used to determine the SVM parameters. After training, model validation must be performed 
so as to guarantee the generalizability of SVM. After validation, a SVM predictor with optimal parameters can be 
obtained. 

Phase IV: Out-of-Sample Forecasting. Using the optimal SVM predictor, the trained SVM can be used for out-
of-sample time series prediction.  

It is worth noting that the proposed SVM-based crude oil price forecasting model is constructed on a sliding 
window or rolling windows data basis. The estimation window is with a fixed size and it recursively changes as 
forecasting moves forward in time (West, 1996). In a sense, the proposed model is actually a SVM-based crude oil 
price rolling forecasting model.  

Figure 1. A procedure of SVM-based time series forecasting system 
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To evaluate the forecasting ability of the SVM predictor, this study investigates its performance by comparing 
it with FNN, ARIMA, ARFIMA, MS-ARFIMA, and RW models. ARIMA model proposed by Box and Jenkins (1976) 
is a mixture of auto-regressive (AR) model and moving average (MA) models to describe time series. One of the 
distinct disadvantages of ARIMA is that it cannot describe the long-range dependence of complex time series (e.g. 
financial time series) because it implies an extreme form of persistence. But for a pure unit root series, the impact 
of shocks does not vanish even in the infinite horizon. For this a fractional integrated ARIMA (ARFIMA) model 
(Granger and Joyeux, 1980) is proposed. An ARFIMA model is a natural extension of ARIMA that tolerates 
fractional integration. However, both the ARIMA and ARFIMA models cannot capture the nonlinear patterns if 
nonlinearity exists in time series. In order to remedy the shortcoming, the Markov switching ARFIMA (MS-
ARFIMA) model (Hamilton, 1994), which is a combination of Markov process and ARFIMA model, is used to assess 
the impact of both long memory and non-linearity on forecasting. As a popular intelligent model, a three-layer 
feed-forward neural network (FNN) incorporating the Levenberg-Marquardt algorithm is adopted for comparison 
purpose. The major merit of FNN models is their flexible nonlinear modeling capability. They can capture the 
nonlinear characteristics of time series well. However, FNN does not lead to one global or unique solution due to 
differences in initial weights. Interested readers can refer to Box and Jenkins (1976), Granger and Joyeux (1980), 
Hamilton (1994) and White (1990) for more details about these models. 

EMPIRICAL STUDY 
In this section, we first describe the data, and then define some evaluation criteria for prediction purposes. 

Finally, empirical results and explanations are presented. 

Research Data and Evaluation Criteria 
As Section 2.2 reveals, there are many crude oil price data series. For the purpose of investigation and analysis, 

the two benchmark crude oil price series, West Texas Intermediate (WTI) crude oil spot price and Brent crude oil 
spot price are chosen as experimental targets. Both price series are used widely as the basis of many crude oil price 
formulae (Yu et al., 2008).  

In this study, we take monthly data from January 1990 to July 2008, with a total of 223 observations, as shown 
in Figure 2. The data are freely available from the Energy Information Administration (EIA) website of Department 
of Energy (DOE) of the United States (http://www.eia.doe.gov/). For ensuring rolling forecasting modeling, the 
estimation window is fixed at 180 observations and the forecasting horizon is set at one step. This means that the 
first training sample for model estimation is from January 1990 to December 2004, and then it repeatedly moves 
forward. The second training sample is from February 1990 to January 2005, and the last one is from July 1993 to 
June 2008. There are, in total, 43 observations in the testing set (from January 2005 to July 2008) used to evaluate the 
performance of prediction. Only one-step-ahead prediction is performed in the experiments. Actually, multi-step-
ahead prediction, e.g., step size or prediction horizon is larger than one, can also be performed, but the prediction 
performance in such cases is unsatisfactory. For this reason, this study focuses only on one-month-ahead 
forecasting. 

To measure the forecasting performance, two main criteria are used for evaluation of level prediction and 
directional forecasting. First, we select the root mean squared error (RMSE) as the criterion of evaluation of the 
level of accuracy. Typically, the RMSE can be defined by 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁�

(𝑥𝑥�(𝑡𝑡) − 𝑥𝑥(𝑡𝑡))2
𝑁𝑁

𝑡𝑡=1

 (7) 

where 𝑥𝑥(𝑡𝑡) is the actual value, 𝑥𝑥�(𝑡𝑡) is the predicted value, and 𝑁𝑁 is the number of predictions. 
Clearly, accuracy is one of the most important criteria for forecasting models, the other being the decision 

improvements generated from directional predictions. From the business point of view, the latter is more important 
than the former. For business practitioners, the aim of forecasting is to support or improve decisions, so as to make 
more money. But in crude oil price forecasting, improved decisions usually depend on correct forecasting of 
direction, of actual price, and predicted price, 𝑥𝑥(𝑡𝑡) and 𝑥𝑥�(𝑡𝑡). The ability to predict movement direction can be 
measured by a directional statistic (𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) (Yu et al., 2007b, 2008), which can be expressed as 

 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
1
𝑁𝑁�𝑎𝑎𝑡𝑡

𝑁𝑁

𝑡𝑡=1

× 100% (8) 

where 𝑎𝑎𝑡𝑡=1 if(𝑥𝑥𝑡𝑡+1 − 𝑥𝑥𝑡𝑡)(𝑥𝑥�𝑡𝑡+1 − 𝑥𝑥𝑡𝑡) ≥ 0, and 𝑎𝑎𝑡𝑡=0 otherwise. 
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Experimental Results 
Before applying the ARIMA model, an augmented Dickey-Fuller (ADF) test should be done. The results of the 

ADF test show that the two crude oil price time series follows the unit root process. In order to utilize the ARIMA 
model, the first-order difference is necessary. Thus, ARIMA (p, 1, d) is used. Note that ARIMA (p, 1, q) has p 
autoregressive terms and q moving-average terms after the first-order difference. As previously mentioned in 
Section 2.2, we use rolling forecasting with sliding windows data and, therefore, values of p and q are different for 
each prediction of WTI and Brent oil price. The best ARIMA model for each training sample is selected, based on 
Schwarz Criterion (SC) minimization, but the maximum p and q is restricted to only 3. 

From the experience of the ARIMA modeling, a fractional integrated ARIMA (p, 1, q) is estimated for each 
training sample. The selection criterion is also SC minimization since Schmidt and Tschernig (1995) proved that the 
SC criterion is the most robust model selection criteria for ARFIMA model identification. But the maximum p and 
q are set to 3, as in case of the ARIMA model. The estimation method is exact maximum likelihood (EML), proposed 
by Sowell (1992). Both ARIMA and ARFIMA models are applied by the ARFIMA package 1.1 based on OX console 
5.1.  

For the MS-ARFIMA model, the number of regimes is set to two. The WTI price prediction model is built on the 
basis of SC minimization but Brent price forecasting model is built in terms of AIC minimization because for WTI 
crude oil price prediction the model based on SC outperforms the model based on AIC, and for Brent crude oil 
price prediction AIC outperforms SC. But the maximum p is restricted to 3 and q is to 0. The MS-ARFIMA model is 
implemented by MSVAR 1.3.2 package (Krolzig, 1998) (This package is implemented on OX console 3.4), combined 
with ARFIMA package 1.0.4, based on OX console 5.1.  

For neural network models, FNN (I-H-O) models are used, where FNN (I-H-O) denotes that the FNN model 
has I input neurons, H hidden nodes, and O output neurons. In this study, we use 5 input neurons, 9 hidden neurons 
and 1 output neuron in terms of the results of trial and error method. For SVM models, the Gaussian RBF kernel is 
used. Regularization constant C and the kernel parameter σ2 are determined by the trial and error method. Due to 
the changing estimation window in rolling forecasting, these parameter values of SVM models will change for each 
prediction. In this study, 43 experiments are made for each crude oil price series and thus we will have 172 
parameter values for the two crude oil price series (i.e. 43 C and 43 σ2 for WTI and Brent crude oil price respectively, 
because of rolling estimation window). Due to space constraints, these values are not provided here. In addition, 
time delay parameter s is set to 5.  

Using the above settings, prediction results for the two crude oil price series are computed. Figures 3-4 
graphically depict the price forecasting results of the two crude oil prices using different models. From the figures, 
we can roughly see that the performance of the SVM-based crude oil price forecasting approach is better than of 
other crude oil price forecasting models listed in this study. For the FNN model, the neural network toolbox 
(Version 5.0) of Matlab software package is used. In the SVM model, LS-SVMlab1.5 toolbox (Pelckmans et al., 2003) 
is adopted, based on the Matlab platform. 

 
Figure 2. Monthly data of WTI and Brent oil prices for the period 1990-2008 
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Tables 1 to 2 show the forecasting performance of different models from different perspectives. Table 1 shows 
comparison of RMSE of WTI crude oil price prediction by the SVM-based forecasting model and other models 
listed in this study. Similarly, Table 2 provides comparison of the directional prediction (Dstat) of Brent crude oil 
price prediction by different models. From the tables, it is easy to find that the SVM-based forecasting approach is 
very promising for all crude oil price series forecasting under study, whether the measurement of forecasting 
performance is goodness of fit, such as RMSE (refer to Table 1), or it is Dstat (refer to Table 2), indicating that the 
proposed SVM-based forecasting model has good potentiality in crude oil price forecasting, relative to other models 
listed in this study. 

In case of the RMSE criterion, the SVM-based crude oil price forecasting approach performs the best in all cases. 
Furthermore, RMSE results, in case of WTI, are slightly better than in case of Brent crude oil price. The possible 
reason could be that WTI crude oil prices have larger volatility than Brent crude oil prices due to the fact that WTI 
is the most important price indicator in international crude oil markets. The other five methods produce some 
interestingly mixed results. The FNN model gives RMSE results for WTI that are better than those for Brent. There 
are two possible reasons. On one hand, the FNN model is in a class of unstable predictors because of initial random 
weights, thus making the prediction results unstable in crude oil price forecasting. On the other hand, there may 
be some local minima in FNN while forecasting Brent crude oil price. In ARIMA, ARFIMA and MS-ARFIMA 
models, we find that MS-ARFIMA is generally better than the other two. The ARFIMA model fails to show 
forecasting ability superior to ARIMA in case of Brent crude oil price. As we know, the advantage of the ARFIMA 
model, compared to ARIMA, is the ability to capture the long memory characteristic, but the advantage of MS-

 
                                          (a)                                                                                           (b) 

 
                                          (c)                                                                                           (d) 

 
                                          (e)                                                                                           (f) 
Figure 3. WTI crude oil price prediction results of each model 
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ARFIMA over ARFIMA lies in the ability to effectively capture the nonlinearity hidden in crude oil price series. 
This may suggest that nonlinearity is more important for Brent crude oil price prediction than the long memory 
characteristic. RW models show the worst results, implying that crude oil prices are not unpredictable. This 
confirms the results of Ye et al. (2005). 

However, the low RMSE does not necessarily mean that there is a high hit rate in forecasting of crude oil price 
movement direction, which is more important for business practitioners. Thus, the Dstat comparison is necessary. 
In Table 2, we find that in terms of Dstat also, the proposed SVM-based forecasting model performs much better 
than other models. Furthermore, from the business practitioners’ point of view, Dstat is more important than RMSE 
because Dstat is an important decision criterion for investments in crude oil market. With reference to Table 2, 
variations between different models are very significant. For example, in case of WTI forecasting, Dstat for the RW 

 
                                          (a)                                                                                           (b) 

 
                                          (c)                                                                                           (d) 

 
                                          (e)                                                                                           (f) 
Figure 4. Brent crude oil price prediction results of each model 
 
Table 1. The RMSE comparisons for different models 

Models 
  WTI     Brent   

RMSE Rank RMSE Rank 
RW 5.1545 6 5.5195 6 
SVM 3.9337 1 3.6042 1 
FNN 4.8682 3 5.4572 5 

ARIMA 5.0493 5 5.4167 3 
ARFIMA 4.9956 4 5.4420 4 

MS-ARFIMA 4.8591 2 5.2786 2 
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model is 58.14%, whereas for FNN and ARIMA models, Dstat is 65.12%, and for the SVM-based forecasting model, 
Dstat reaches 74.42%. In the six listed models, SVM and FNN models perform better than the other four statistical-
based models. The main reason is that SVM and FNN are two typical nonlinear intelligent models which can 
capture the nonlinearity in crude oil price series, indicating that the intelligent models have stronger prediction 
abilities than the statistical-based models. It is interesting that the Dstat rank of ARIMA model outperforms ARFIMA 
and MS-ARFIMA models.  

Both the intelligent predictors (SVM and FNN) can, in principle, describe the nonlinear dynamics of crude oil 
price series. Designed on the basis of the unique theory of the structural risk minimization principle to estimate a 
function by minimizing an upper bound of the generalization error, SVM is resistant to the over-fitting problem, 
and can model nonlinear relations in an efficient and stable way. Furthermore, the SVM is trained as a convex 
optimization problem that produces a global solution that in many cases yields unique solutions. Compared with 
the SVM’s merits, FNN tends to suffer from an over-fitting problem and does not lead to a single global or unique 
solution, owing to differences in initial weights. Therefore, SVM generally outperforms FNN; empirical results 
further confirm such an analysis, indicating that SVM has stronger forecasting capabilities than other methods 
listed in this study. 

In order to further compare the predictive accuracy of different forecasting models, the Diebold-Mariano 
statistic (Diebold and Mariano, 1995) is used to test the statistical significance of forecasts of different models. When 
comparing two forecasts, the question arises whether predictions of a given model, A, are significantly more 
accurate, in terms of a loss function, than those of the competing model, B. The Diebold-Mariano test aims to test 
the null hypothesis of equality of expected forecast accuracy against the alternative of different forecasting abilities 
across models. In this study, the loss function is set to mean square prediction error (MSPE) and the null hypothesis 
is that the MSPE of a specific model is less than that of another model. The statistical testing results are shown in 
Tables 3 and 4. Note that the results listed in Tables 3 and 4 are the Diebold-Mariano test values, and p values are 
in brackets. 

From figures in Tables 3 and 4, we can draw the following conclusions. First of all, for WTI crude oil price 
prediction, the proposed SVM-based forecasting model outperforms MS-ARFIMA, ARFIMA, ARIMA and RW 
models at 10% statistical significance level. However, the SVM-based forecasting model does not significantly 
outperform the FNN-based forecasting model.  

Table 2. The Dstat comparisons for different models 

Models 
  WTI     Brent   

Dstat (%) Rank Dstat (%) Rank 
RW 58.14 6 55.81 5 
SVM 74.42 1 76.74 1 
FNN 65.12 2 69.77 2 

ARIMA 65.12 2 65.12 3 
ARFIMA 60.47 5 58.14 4 

MS-ARFIMA 62.79 4 53.49 6 
 

Table 3. Diebold-Mariano test between different models for WTI crude oil price forecasting 
 FNN MS-ARFIMA ARFIMA ARIMA RW 

SVM -0.6472 -1.4733 -1.5686 -1.4554 -1.4217 
(0.2588) (0.0703) (0.0584) (0.0728) (0.0776) 

FNN  0.0088 -0.1335 -0.2049 -0.3627 
 (0.5035) (0.4469) (0.4188) (0.3584) 

MS-ARFIMA 
  -1.3086 -0.9135 -0.9294 
  (0.0953) (0.1805) (0.1763) 

ARFIMA    -0.3992 -0.6559 
   (0.3449) (0.2560) 

ARIMA     -0.8806 
    (0.1893) 
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Second, for Brent crude oil price forecasting, the proposed SVM-based prediction approach performs much 
better than MS-ARFIMA, ARFIMA and RW model at 1% statistical significance level. At the same time, the SVM-
based forecasting model outperforms the FNN-based forecasting model at 5% statistical significance level. This 
statistically demonstrates the potentiality of SVM approach in crude oil price forecasting. 

Third, in WTI crude oil price forecasting, MS-ARFIMA model can perform better than ARFIMA model at 10% 
statistical significance. The main reason is that MS-ARFIMA model can capture nonlinear patterns hidden in crude 
oil price series while ARFIMA cannot. Other than this, there is no significant difference between other models in 
WTI crude oil price forecasting, according to the results in Table 3. 

Finally, in Brent crude oil price forecasting, ARIMA model can significantly outperform the RW model at 10% 
statistical significance level. In addition, there is no statistically significant difference between other models in WTI 
crude oil price forecasting in terms of results in Table 4. 

CONCLUSIONS 
In this study, the potentiality of applying SVM model to crude oil price prediction is assessed by empirical 

investigation. Experimental results obtained confirm the potentiality of SVM model in crude oil price forecasting, 
which is explained by two competitive advantages of SVM model over the conventional statistical-based 
forecasting models and ANN-based forecasting models. On the one hand, due to adoption of the structure risk 
minimization (SRM) principle, the SVM model provides better generalization capability than the conventional 
statistical models and ANN-based models. On the other hand, the SVM model can eliminate the typical drawbacks 
of conventional models, e.g., local minima and over-fitting problems, in terms of empirical risk minimization (ERM) 
principle, and thus obtain more stable and robust generalization results, relative to conventional methods. In 
addition, the SVM model has fewer free parameters than the ANN model. Regularization constant C and kernel 
parameter σ2 are the two factors that need to be considered in the SVM model in this study. While in ANN model, 
the network architecture, learning parameters estimation, and the network training algorithm greatly affect 
prediction performance and thus extra care is required during simulation (Tay and Cao, 2001). 

In summary, empirical results find that among different forecasting models used for the two main crude oil 
price series (WTI crude oil price and Brent crude oil price), in terms of different criteria, the SVM-based forecasting 
model performs the best. In all testing cases, RMSE is the lowest and Dstat is the highest, indicating that the SVM-
based forecasting approach can provide a promising alternative and offers advantages in crude oil price time series 
forecasting. 

However, in crude oil price forecasting, many issues deserve to be studied further. For example, irregular events 
have an important impact on crude oil price fluctuations; how to incorporate effects of irregular events on crude 
oil price volatility into predictions is a major issue. In addition, application of the SVM method in crude oil price 
forecasting is a good and interesting attempt and it may be worth testing its utility in other fields also. We will look 
into these issues in the future. 
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Table 4. Diebold-Mariano test between different models for Brent crude oil price forecasting 
 FNN MS-ARFIMA ARFIMA ARIMA RW 

SVM 
-2.1141 -6.9339 -4.9006 -3.8811, -3.7139 
(0.0173) (0.0000) (0.0000) (0.0000) (0.0001) 

FNN  0.2813 0.0310 0.0936 -0.1702 
 (0.6108) (0.5124) (0.5373) (0.4324) 

MS-ARFIMA 
  -0.8342 -0.5425 -0.5480 
  (0.2021) (0.2937) (0.2918) 

ARFIMA 
   0.2738 -0.7847 
   (0. 6079) (0.2163) 

ARIMA     -1.2923 
    (0.0981) 

 



 
 

EURASIA J Math Sci and Tech Ed 

 

7903 
 

REFERENCES 
Abramson, B., & Finizza, A. (1995). Probabilistic forecasts from probabilistic models: a case study in the oil market. 

International Journal of Forecasting, 11(1), 63-72. 
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge 

Discovery, 2, 121-167. 
Cao, L. J., & Tay, F. E. H. (2001). Financial forecasting using support vector machines. Neural Computing Applications, 

10, 184-192. 
Cristianini, N., & Taylor, J. S. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning 

Methods. Cambridge University Press, New York. 
Chou, J. R. (2016). An Empirical Study of User Experience on Touch Mice. Eurasia Journal of Mathematics, Science & 

Technology Education, 12(11), 2875-2885. 
Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13, 

253-263. 
Doornik, J. A., & Ooms, M. (2001). A package for estimating, forecasting and simulating ARFIMA models: ARFIMA 

Package 1.1 for Ox. Working paper, Nuffield College, Oxford. 
Granger, C. W. J., & Joyeux, R. (1980). An introduction to long-memory time series models and fractional 

differencing. Journal of Time Series Analysis, 1, 15-29. 
Gulen, S. G. (1998). Efficiency in the crude oil futures market. Journal of Energy Finance & Development, 3, 13-21. 
Hamilton, J. D. (1994). Time Series Analysis. Princeton, NJ: Princeton University Press. 
Huntington, H. G. (1994). Oil price forecasting in the 1980s: what went wrong? The Energy Journal, 15(2), 1-22. 
Kaboudan, M. A. (2001). Compumetric forecasting of crude oil prices. The Proceedings of IEEE Congress on 

Evolutionary Computation, 283-287. 
Krolzig, H. M. (1998). Econometric modelling of markov-switching vector autoregressions using MSVAR for Ox, Working 

Paper, Nuffield College, Oxford. 
Lanza, A., Manera, M., & Giovannini, M. (2005). Modeling and forecasting cointegrated relationships among heavy 

oil and product prices. Energy Economics, 27, 831-848. 
Lee, D. K., & Lee, E. S. (2016). Analyzing team based engineering design process in computer supported 

collaborative learning. Eurasia Journal of Mathematics, Science & Technology Education, 12(4), 767-782. 
Mirmirani, S., & Li, H. C. (2004). A comparison of VAR and neural networks with genetic algorithm in forecasting 

price of oil. Advances in Econometrics, 19, 203-223. 
Morana, C. (2001). A semiparametric approach to short-term oil price forecasting. Energy Economics, 23(3), 325-338. 
Muller, K. R., Smola, J. A., & Scholkopf, B. (1997). Prediction time series with support vector machines. Proceedings 

of International Conference on Artificial Neural Networks, Lausanne, 999-1004. 
Panas, E., & Ninni, V. (2000). Are oil markets chaotic? A non-linear dynamic analysis. Energy Economics, 22, 549-

568. 
Pelckmans, K., Suykens, J. A. K., Van Gestel, T., De Brabanter, J., Lukas, L., Hamers, B., De Moor, B., & Vandewalle, 

J. (2003). LS-SVMlab Toolbox User’s Guide (version 1.5), ESAT-SCD-SISTA Technical Report 02-145, Katholieke 
Universiteit Leuven. 

Schmidt, C. M., & Tschernig, R. (1995). The identification of fractional ARIMA models. Sonderforschungsbereich, 373, 
Humboldt Universitaet Berlin.  

Shambora, W. E., & Rossiter, R. (2007). Are there exploitable inefficiencies in the futures market for oil? Energy 
Economics, 29, 18-27. 

Sowell, F. (1992). Maximum likelihood estimation of stationary univariate fractionally integrated time series 
models. Journal of Econometrics, 53, 165-188. 

Tay, F. E. H., & Cao, L. J. (2001a). Applications of support vector machines in financial time series forecasting. 
Omega, 29, 309-317. 

Tay, F. E. H., & Cao, L. J. (2001b). Improved financial time series forecasting by combining support vector machines 
with self-organizing feature map. Intelligent Data Analysis, 5, 339-354. 

Tay, F. E. H., & Cao, L. J. (2002). Modified support vector machines in financial time series forecasting. 
Neurocomputing, 48, 847-861. 

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. New York: Springer. 



 
 
Yu et al. / Assessing Potentiality of Support Vector Machine Method 

 

7904 
 

Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10, 988-999. 
Vapnik, V. N., Golowich, S. E., & Smola, A. J. (1996). Support vector method for function approximation, regression 

estimation, and signal processing. Advances in Neural Information Processing Systems, 9, 281-287. 
Wang, S. Y., Yu, L., & Lai, K. K. (2004). A novel hybrid AI system framework for crude oil price forecasting. Lecture 

Notes in Computer Science, 3327, 233-242. 
Wang, S. Y., Yu, L., & Lai, K. K. (2005). Crude oil price forecasting with TEI@I methodology. Journal of Systems 

Sciences and Complexity, 18(2), 145-166. 
Watkins, G. C., & Plourde, A. (1994). How volatile are crude oil prices? OPEC Review, 18(4), 220-245. 
Weigend, A. S., & Gershenfeld, N. A. (1994). Time Series Prediction: Forecasting the Future and Understanding the Past. 

Addison-Wesley, Reading, MA. 
West, K. D. (1996). Asymptotic inference about predictive ability. Econometrica, 64, 1067-1084. 
White, H. (1990). Connectionist nonparametric regression: multilayer feedforward networks can learn arbitrary 

mappings. Neural Networks, 3, 535-549. 
Ye, M., Zyren, J., & Shore, J. (2002). Forecasting crude oil spot price using OECD petroleum inventory levels. 

International Advances in Economic Research, 8, 324-334. 
Ye, M., Zyren, J., & Shore, J. (2005). A monthly crude oil spot price forecasting model using relative inventories. 

International Journal of Forecasting, 21, 491-501. 
Ye, M., Zyren, J., & Shore, J. (2006). Forecasting short-run crude oil price using high and low-inventory variables. 

Energy Policy, 34, 2736-2743. 
Yu, L., Lai, K. K., Wang, S. Y., & He, K. J. (2007a). Oil price forecasting with an EMD-based multiscale neural 

network learning paradigm. Lecture Notes in Computer Science, 4489, 925-932. 
Yu, L., Wang, S. Y., & Lai, K. K. (2007b). Foreign-Exchange-Rate Forecasting with Artificial Neural Networks. Springer, 

New York. 
Yu, L., Wang, S. Y., & Lai, K. K. (2008). Forecasting crude oil price with an EMD-based neural network ensemble 

learning paradigm. Energy Economics, 30(5), 2623-2635. 
Zhang, X., Lai, K. K., & Wang, S. Y. (2008). A new approach for crude oil price analysis based on empirical mode 

decomposition. Energy Economics, 30(3), 905-918. 
 
 

http://www.ejmste.com 


	INTRODUCTION
	SVM-BASED CRUDE OIL PRICE FORECASTING APPROACH
	Theory of SVM Regression
	SVM-based Crude Oil Price Time Series Forecasting

	EMPIRICAL STUDY
	Research Data and Evaluation Criteria
	Experimental Results

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

