
 
 
 EURASIA Journal of Mathematics, Science and Technology Education, 2019, 15(7), em1721 
  ISSN:1305-8223 (online) 
OPEN ACCESS Research Paper https://doi.org/10.29333/ejmste/106166  
 

 
© 2019 by the authors; licensee Modestum Ltd., UK. This article is an open access article distributed under the 
terms and conditions of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/). 

 vborji@ub.edu  vahid.borji65@gmail.com  vahid.borji@mail.um.ac.ir (*Correspondence)   vfont@ub.edu  
 
 

Exploring Students’ Understanding of Integration by Parts: A 
Combined Use of APOS and OSA 

Vahid Borji 1,2*, Vicenç Font 1 
1 Departament de Didàctica de les CCEE i la Matemàtica, Facultat de Formació del Professorat, Universitat de Barcelona, Passeig 

de la Vall d’Hebrón, 171, Barcelona 08035 Catalonia, SPAIN 
2 Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, IRAN 

Received 30 August 2018 ▪ Revised 4 December 2018 ▪ Accepted 12 January 2019 

 
ABSTRACT 
Our goal in this paper is to study students’ understanding of integration by parts based 
on two theories, APOS and OSA. We make an epistemic configuration (EC) of primary 
objects that a student activate for solving tasks in relation to the integration by parts, 
and then we design a genetic decomposition (GD) of mental constructions that he/she 
might need to learn the integration by parts. We then describe the EC and GD in terms 
of the levels of development of Schema (i.e., intra, inter and trans). Three tasks in a 
semi-structured interview were used to explore twenty three first-year students’ 
understanding of integration by parts and classify their schemas. Results showed that 
students had difficulties in integration by parts, especially in using this technique to 
obtain a simpler integral than the one they started with. Using APOS and OSA gave us 
a clear insight about students’ difficulties and helped us to better describe students’ 
understanding of integration by parts. 

Keywords: student’s understanding, integration by parts, mental constructions, 
primary objects, schema 

 

INTRODUCTION 
The integral is a key tool in calculus for defining and calculating many important quantities, such as areas, 
volumes, lengths of curved paths, probabilities, averages, energy consumption, population predictions, forces on 
a dam, work, the weights of various objects and consumer surplus, among many others (Thomas, Weir, Hass & 
Giordano, 2010). As with the derivative, the definite integral also arises as a limit. By considering the rate of change 
of the area under a graph, Calculus proves that definite integrals are connected to anti-derivatives, a connection 
that gives one of the most important relationships in calculus. The Fundamental Theorem of Calculus (FTC) relates 
the integral to the derivative, and it greatly simplifies the solution of many problems. The FTC enables one to 
compute areas and integrals very easily without having to compute them as limits of sums. Because of the FTC, 
one can integrate a function if one knows an anti-derivative, that is, an indefinite integral (Anton, Bivens, & Davis, 
2010). 

Some research studies reported that integration is more challenging than differentiation for students (Kiat, 2005; 
Mahir, 2009; Orton, 1983; Thompson, 1994). These researchers explained that in finding the derivative of a function 
it is obvious which differentiation formula we should apply. But it may not be obvious which technique students 
should use to integrate a given function. Integration is not as straightforward as differentiation; there are no rules 
that absolutely guarantee obtaining an indefinite integral of a function (Pino-Fan, Font, Gordillo, Larios, & Breda, 
2017). 

Radmehr and Drake (2017) explored students’ mathematical performance, metacognitive skills and 
metacognitive experiences in relation to the integral questions by interviewing students. Their findings showed 
that several students had difficulty solving questions related to the FTC and that students’ metacognitive skills and 
experiences could be further developed. Pino-Fan et al. (2017) presented the results of a questionnaire designed to 
evaluate the understanding that civil engineering students have of integrals. The questionnaire was simultaneously 
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administered to samples of Mexican and Colombian students. For the analysis of the answers, they used some 
theoretical and methodological notions provided by the OSA to analyze mathematical cognition and instruction. 
The results revealed the meanings of the anti-derivative that are more predominantly used by civil engineering 
students. Llinares, Boigues, and Estruch (2010) described the triad development of a Schema for the concept of the 
definite integral. Data for their study was gathered from earth science engineering. The results demonstrate 
students’ difficulty in linking a succession of Riemann sums to the limit, which forms the basis for the meaning of 
the definite integral. Mateus (2016) presented an analysis of the structure and functioning of a sequence of math 
classes, with Colombian sophomore bachelor’s degree in mathematics, where the method of integration by parts 
explained was presented. The model of analysis proposed by the focus Onto-semiotic of Cognition and Instruction 
Mathematics was used. The didactic analysis of Mateus led to the conclusion that the sequence analyzed classes 
can be considered as a mechanistic degeneration of the formal class. Since the development of the same are used 
partially formal characteristics mechanistic paradigms. Moreover, it was observed that the structure and operation 
of the analyzed classes ignores the complexity of integrated onto-semiotic, which is one of the reasons why certain 
learning difficulties occur in students. 

Although many studies have been done in Calculus Education about students’ understanding of integrals 
(Jones, 2013; Kiat, 2005; Kouropatov & Dreyfus, 2014; Mahir, 2009; Pino-Fan et al., 2017; Radmehr & Drake, 2017; 
Thompson, 1994), very few focused on the teaching and learning of integration by parts (Mateus, 2016). For this 
reason, and also the importance and necessarily of integration by parts in Calculus II, Differential Equations and 
Engineering Mathematics, where students need to use this technique for solving many questions in these subjects, 
this article focused on this technique of integration. Every differentiation rule has a corresponding integration rule. 
The rule that corresponds to the Product Rule for differentiation is called the rule for integration by parts (Stewart, 
2010). The formula for integration by parts becomes: ∫𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑢𝑢𝑢𝑢 − ∫𝑣𝑣𝑣𝑣𝑣𝑣. The aim in using integration by parts is 
to obtain a simpler integral (∫𝑢𝑢𝑢𝑢𝑢𝑢) than the one started with (∫𝑣𝑣𝑣𝑣𝑣𝑣).  

In the research studies of Mathematics Education there is an interest to find connections between theories to 
have a better analysis of students’ understanding of mathematical concepts (Badillo, Azcárate, & Font, 2011; 
Haspekian, Bikner-Ahsbahs, & Artigue, 2013, Pino-Fan, Guzmán, Duval & Font, 2015). In recent research, 
relationships between the APOS (Action, Process, Object, & Schema) (Arnon et al., 2014) and the OSA (Onto-
Semiotic Approach) (Font, Godino, & Gallardo, 2013; Godino, Batanero, & Font, 2007) have been explored in 
relation to the Calculus concepts (Badillo et al., 2011; Borji, Font, Alamolhodaei, Sánchez, 2018; Font, Trigueros, 
Badillo, & Rubio, 2016). It is possible to connect APOS and OSA for exploring students’ understanding of 
mathematical concepts (Bikner-Ahsbahs & Prediger, 2014; Borji et al., 2018; Font et al., 2016) due to each of these 
theoretical approaches uses the term object. Thus, both theories consider the constructive nature of mathematics 
and take the institutional component into account. In both of them the mathematical activity of individuals plays a 
central role and both use notions involved in their description that show similarities (e.g. action, process or object). 
They also share a constructivist position in relation to the nature of mathematics. These similarities led Font et al., 
(2016) to conclude that there are no intrinsic contradictions between the two theories, and that possible connections 
between them could be expected through their comparison.  

In this article, to analyze students’ understanding of integration by parts, we used APOS and OSA. APOS theory 
describes mental constructions which one student might needed to learn a mathematical concept. Much research 
has used this theory to analyze students’ mathematical understanding, especially Calculus notations (Arnon et al., 
2014). In addition, OSA is a theory that analyzes mathematical practices by identifying primary objects that are 
activated during engaging in such practices (Godino, et al., 2007). Recent studies showed that OSA is a useful theory 
for exploring primary objects and help to have a better understanding of students’ learning (Font & Contreras, 2008; 
Font, et al., 2013; Pino-Fan et al., 2017). Font et al. (2016) showed that APOS and OSA complement each other to 
conceptualize the notion of a mathematical object. Borji et al. (2018) applied the complementarities of APOS and 
OSA for the analysis of the university students’ understanding on the graph of the function and its derivative. They 
explored the students’ graphical understanding regarding the first derivative and characterized their schemas in 
terms of levels (intra, inter and trans) of development of the schema. Their results showed that most of the students 

Contribution of this paper to the literature 

• In this article, to analyze students’ understanding of integration by parts, we used APOS and OSA. 
• Although many studies have been done in Calculus Education about students’ understanding of integrals, 

very few focused on the teaching and learning of integration by parts. 
• The combined use of APOS and OSA gave us a better insight to explore students’ understanding of 

integration by parts, so the networking of these theories can help researchers to analyze students’ 
understanding of other mathematics concepts. 
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had major problems in sketching graph 𝑓𝑓′ when given the graph 𝑓𝑓. A similar methodology has been used in the 
present study. 

To date, APOS and OSA theories have not been used together as a complementary combination for analyzing 
students’ understanding of the integration by parts. In this research, we use the combination of these two theories 
to investigate how students understand the integration by parts. The research question that we are looking for an 
answer to in this article is: What are students’ main mental constructions and primary objects regarding integration by 
parts?  

THEORETICAL FRAMEWORK 
In this section, the theoretical frameworks (i.e., APOS & OSA) used in this study and their relationships are 

described to frame the article.  

APOS Theory 
APOS is a theory that introduces Action, Process, Object and Schema as mental constructions that one learner 

might performs to make meanings of a certain cognitive request (Arnon et al., 2014). Internalization, encapsulation, 
coordination, reversion and thematization are the mental mechanisms that allow the above mental constructions 
to be made.  

With action conception the student perceives the mathematics object as something external. When the student 
repeats an action and reflects on it, action conception can be interiorized to a process conception. The process 
conception is a transformation which is an internal construction. Having a process conception the student can 
explain the steps engaged in the transformation, coordinate them, and skip some and inverse the steps. When the 
student reflects on the process and needs to make transformations or operations on it, the process conception is 
encapsulated into an object conception. With an object conception the learner is aware of the concept as a whole, 
and he/she can make transformations on it. The student can interconnect the objects and processes when they have 
been constructed. For example more than one or two process can be coordinated in a one process. A schema is a 
collection of actions, process and objects that organized in in a structured way. Having a schema of the concept the 
student invokes it when facing related problems. In fact, the schema is a cognitive construction which formed by 
action, process, object and other schemas or even their interrelations (Asiala, Cottrill, Dubinsky, & Schwingendorf, 
1997).  

To describe the development of the schema of a concept in APOS, the triad (intra, inter and trans) of Piaget and 
García (1983) is used. As APOS-based research advanced, it was recognized that the schema structure was 
important and necessary in order to characterize certain learning situations. In APOS-based research, the triad 
advance of stages has been used to describe the development of students’ schemas associated with specific 
mathematical topics and to better find how schemas are thematized to become mathematical cognitive Objects. 
Schema development (triad) has proven to be a useful way to understand this facet of cognitive construction and 
has led to a deep understanding of the construction of schemas (Trigueros, 2005). One student at the intra level 
concentrates on the repetition of actions and recognizes relationships between them in different elements of the 
schema. The inter level characterized by the constructions of relationship and transformation between the actions, 
processes and objects that make the schema. The trans level occurred when the student becomes aware of the 
relationships and transformations in the schema and gives them coherence (Clark et al., 1997). The analysis of the 
mathematical concept focused on the cognitive constructions that might be required for student learning is the 
starting point of the research based on APOS theory. This analysis is a hypothetical model which called the Genetic 
Decomposition (GD) of the mathematical concept. The GD describes a possible way in which a learner constructs 
a mathematical concept in terms of the mental constructions and mechanism of the APOS.  

It should be noted that a GD is not unique, one mathematical concept can has more than one GD. A GD is as a 
useful cognitive model, as evidenced by the results of several empirical studies that show the effectiveness of the 
APOS as an efficient tool for design and analysis of instruction (Borji, Alamolhodaei, & Radmehr 2018; Weller, 
Arnon, & Dubinsky, 2011). 

OSA Theory 
OSA theory describes the processes by which mathematical objects emerge from mathematical practices which 

is complex and must be distinguished, at least at two levels. At the first level, primary objects including definitions, 
language, procedures, propositions, problems and arguments emerge (Font et al., 2013).  

Font and Contreras (2008) in their research about the relation between particular and general in mathematics 
education show some of the theoretical notions proposed by the OSA theory on the emergence of primary objects 
from mathematical practices (Font et al., 2013). By particular and general in mathematics education, Font and 
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Contreras (2008) want to describe how students develop their understanding from the specific mathematical 
situations to the universal situations. For example the function 𝑦𝑦 = 2𝑥𝑥 + 1 is a particular case of a more general 
class of functions (i.e., the family of functions 𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑛𝑛). From the mathematical practices emerge the different 
types of primary objects (language, procedures, definitions, problems, propositions and arguments) organized in 
the Epistemic Configurations (EC), depending on whether a personal or institutional point of view is adopted. OSA 
used the metaphor “climb a ladder” to explain how the primary objects emerge. The step on which we rely to 
perform the practice is a configuration of primary objects already known, while the upper step that we access, as a 
result of the practice, is a new configuration of objects in which some of such objects were not known before. The 
new primary objects appear as a result of mathematical practice and become primary institutional objects by a 
process of institutionalization that are part of the teaching-learning process (Godino et al., 2007). 

In the OSA theory the second level of emergency is considered. The mathematical object emerges as a global 
reference associated with different epistemic configurations that allow performing practices in different 
mathematical contexts. For example the derivative concept as a mathematical object has been interpreted as the 
slope of the tangent line, as a limit process or as a velocity, as well as an operator that transforms a function into 
another function, which leads to the understanding that the derivative represented in different ways, can be defined 
in several ways, etc. The result, according to the OSA theory, is that it considers the existence of a mathematical 
object which plays the role of global reference of all configurations (Godino et al., 2007). 

In the OSA, the mathematical object that plays the role of global reference considered as unique for reasons of 
simplicity and, at the same time, as multiple metaphorically, since it can be said to explode in a multiplicity of 
primary mathematical objects categorized in different configurations. The perspective of the emergence of 
mathematical objects from the mathematical practices proposed by the OSA theory highlights the complexity of 
such mathematical objects and the necessary the articulation of the elements in which such complexity explodes. 
The OSA theory offers an explanation of the complexity in terms of epistemic configurations, and at the same time, 
how this plurality of configurations can look in a unitary way (Font et al., 2013). 

Relation between APOS and OSA 
The use of the notion of mathematical object in both theories, APOS and OSA, is the starting point for connection 

between two theories (Font et al., 2016). The research in mathematics education has had questions about the nature 
of mathematical objects, their construction process, their various types and their participation in mathematical 
activity. These two theories, APOS and OSA, are samples of a set of theories that use the term mathematical object 
as a relevant construct of their theoretical (Font et al., 2016).  

In the passage from the action to the process and its subsequent encapsulation as an object, from the perspective 
offered by the OSA, many aspects intervene that inform its complexity. First, the student must understand that the 
actions performed can be performed according to a certain procedure (a rule that says how actions should be done). 
At this time, a certain level of reification already occurs, in the sense that the procedure can be treated as a unit (an 
object). Next, the student must consider a new object, the result of the process, and finally must understand the 
meaning of the definition that informs about the nature of the new object. In the APOS theory this transit is also 
considered complex, but unlike OSA, a procedure is not considered to be a cognitive object, but a process; the object 
in APOS would only be the result of the encapsulation of a process. On the new object actions can be exercised. The 
look that the OSA provides on the encapsulation allows one to appreciate that in this one a change of double nature 
takes place, on the one hand it passes from a process to an object (primary according to the OSA), as it indicates the 
APOS, but on the other hand, it changes the nature of the primary object.  

In Font et al. (2016), relationships were found between the encapsulation mechanism in the APOS and the 
emergence of primary objects in the OSA, highlighting the complexity of the mechanism in which primary objects 
of a different nature must be considered. When considering the APOS thematization mechanism, a relation was 
found with the second level of emergence in the OSA, since the object resulting from thematization plays the role 
of global reference for a set of semiotic representations. 

METHOD 
This research is a multiple-case study in which 23 students from a university of Iran participated voluntarily. 

All of them had completed a course of Calculus I (single-variable) in the 2015-2016 academic year and had used 
Stewart Calculus, (2010), as their textbook.  

In the first phase, tasks in a semi-structured interview were used to explore students’ understanding of 
integration by parts. In the second phase, following the methodology of onto-semiotic analysis (Pino-Fan, Godino, 
& Font, 2018), primary objects of EC that were activated during these tasks were identified. The third phase 
included designing a GD based on APOS theory. This GD predicts the mental constructions that might be needed 
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when students use the primary objects to solve such tasks. Additionally, two experts in OSA and APOS have 
evaluated the EC and GD designed in this research, and confirmed their validity. In the fourth phase, the GD and 
EC were used to characterize the development of the integration by parts schemas in terms of the triad (i.e., intra, 
inter and trans levels). In the fifth phase, students’ interview were video recorded and transcribed. Finally, in the 
sixth phase, students’ responses and their schemas were analyzed in terms of the triad of the integration by parts 
schema. 

Tasks 
Evaluate the integrals using integration by parts. 

a) ∫ 𝑥𝑥 𝑒𝑒𝑥𝑥𝑑𝑑𝑑𝑑      b) ∫ 𝑥𝑥 ln 𝑥𝑥 𝑑𝑑𝑑𝑑      c) ∫ 𝑥𝑥 𝑡𝑡𝑡𝑡𝑡𝑡2𝑥𝑥 𝑑𝑑𝑑𝑑 
The tasks posed for this research were rather complex, because they include different types of functions 

(exponential, natural logarithm and trigonometric functions), and also required the students to use some 
prerequisite concepts and rules of differentiation, differentials, anti-derivatives and basic integration, so they might 
needed to perform primary objects of OSA theory and also mental constructions (actions, processes, objects and 
schemas) of APOS theory in order to successfully find the answer to the tasks using integration by parts. Therefore, 
the mental constructions, based on APOS, and the primary objects, based on OSA, that a learner might make to 
develop her/his understanding of the integration by parts are described below. This allowed the authors to 
determine different levels of the development of the schema (intra, inter and trans) of the integration by parts.  

The reason that all of the tasks included 𝑥𝑥 as one of the functions was to examine whether students have rational 
reason to choose terms for u and dv or not. The tasks were designed by the authors and were justified by two 
mathematics education professors and two mathematics professors, all of which had at least 10 years of experience 
in the teaching Calculus. 

A look from OSA: Epistemic Configuration of Primary Objects 
Based on the OSA theory, a priori analysis of the mathematical activities needed to solve the tasks in terms of 

practices and objects performed is made.  

Practice 
1) Read the task. 
2) Evaluate the Integral. 
Problems: The task proposed. 

Languages 
Verbal: Substitution, Differentiation, Differentials, Integration. 
Symbolic: 𝑢𝑢, 𝑣𝑣, 𝑑𝑑𝑑𝑑, 𝑑𝑑𝑑𝑑, ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 
Concepts/definitions: Function, derivative, anti-derivative, Integral. 

Procedures 
Pr0: A proper choice of 𝑢𝑢 and 𝑑𝑑𝑑𝑑. 
Pr1: Calculating new terms 𝑑𝑑𝑑𝑑 and 𝑣𝑣 with differentiation and integration, respectively.  
Pr2: Applying the formula of the equation ∫𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑢𝑢𝑢𝑢 − ∫𝑣𝑣𝑣𝑣𝑣𝑣.  
Pr3: Solving a new integral,∫ 𝑣𝑣𝑣𝑣𝑣𝑣, that is easier than the last one (∫𝑢𝑢𝑢𝑢𝑢𝑢). 

Propositions 
1. If 𝑢𝑢 = 𝑓𝑓(𝑥𝑥), where 𝑓𝑓 is a differentiable function, then the differential 𝑑𝑑𝑑𝑑 is an independent variable. The 

differential 𝑑𝑑𝑑𝑑 defined in terms of 𝑑𝑑𝑑𝑑 by the equation: 𝑑𝑑𝑑𝑑 = 𝑓𝑓′(𝑥𝑥)𝑑𝑑𝑑𝑑. 
2. If 𝑓𝑓′(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑, then using integration: 𝑣𝑣 = ∫𝑓𝑓′(𝑥𝑥)𝑑𝑑𝑑𝑑  
3. If new integral (∫ 𝑣𝑣𝑣𝑣𝑣𝑣) is not solvable or more difficult than the first Integral (∫𝑢𝑢𝑢𝑢𝑢𝑢), it should be better to 

change and choose better terms for 𝑢𝑢 and 𝑑𝑑𝑑𝑑.  
4. If one choose proper 𝑢𝑢 and 𝑑𝑑𝑑𝑑 then the integral ∫𝑣𝑣𝑣𝑣𝑣𝑣 will be easier than the integral ∫𝑢𝑢𝑢𝑢𝑢𝑢. 
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Arguments 

Answer to the task (b) which is ∫ 𝑥𝑥 ln 𝑥𝑥  𝑑𝑑𝑑𝑑: For 𝑢𝑢, ln x is proper because its derivative, which is 1
𝑥𝑥
, is easier than 

itself (ln 𝑥𝑥) and it helps to get an easier integral. The rest part, which is 𝑥𝑥 𝑑𝑑𝑑𝑑 equal to 𝑑𝑑𝑑𝑑. Using integration, 𝑣𝑣 is 𝑥𝑥
2

2
. 

Using the formula for integration by parts (∫𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑢𝑢𝑢𝑢 − ∫𝑣𝑣𝑣𝑣𝑣𝑣) one can get 𝑥𝑥
2

2
ln 𝑥𝑥 − ∫ 𝑥𝑥2

2
1
𝑥𝑥
𝑑𝑑𝑑𝑑 and it is equal to: 

1
2
𝑥𝑥2 ln 𝑥𝑥 − 1

4
𝑥𝑥2 + 𝐶𝐶. 

A Look from APOS: Genetic Decomposition 
As a part of her or his derivative schema, the student 
1. Has developed a process or object conception of differentiation rules. 
2. Has developed a process or object conception of differential (𝑢𝑢 = 𝑓𝑓(𝑥𝑥) then 𝑑𝑑𝑑𝑑 = 𝑓𝑓′(𝑥𝑥)𝑑𝑑𝑑𝑑). 
As a part of her or his Integral schema, the student 
3. Has developed a process or object conception of integration’s table (e.g. knowing integrals such as ∫ 𝑥𝑥𝑛𝑛 𝑑𝑑𝑑𝑑, 

∫ sin 𝑥𝑥 𝑑𝑑𝑑𝑑 and …) and substitution rule. 
4. The student then coordinates previously constructed schemas to a new process and applies them to the 

formula of Integration by parts, ∫𝑢𝑢 𝑑𝑑𝑑𝑑 = 𝑢𝑢𝑢𝑢 − ∫𝑣𝑣 𝑑𝑑𝑑𝑑. The coordination consists in first choosing terms of 
the integrand for 𝑢𝑢 and 𝑑𝑑𝑑𝑑 and then finding 𝑑𝑑𝑑𝑑 and 𝑣𝑣 using differential and Integration, respectively, and 
then substituting them into the formula. 

5. Process conception of integration by parts, encapsulates to an object conception as a totality. Having an 
object conception of integration by parts, one student can correctly and with reasoning recognize and choose 
proper terms of the integrand for 𝑢𝑢 and 𝑣𝑣 for having an easier Integral for next step (∫ 𝑣𝑣 𝑑𝑑𝑑𝑑). 

6. The student establishes relations between these processes, objects with other schemas to construct and 
complete his/her schema of integration by parts, so that he/she will be able to recognize whether a given 
integral can be solved using integration by parts, and if so, how. 

Based on the initial description of how the technique of integration by parts might be learned (GD), an attempt 
to interpret the data using the Action-Process-Object-Schema theoretical framework is made. To describe students’ 
development of schema, a theory of schema development based on ideas of Piaget and Garcia (1983) is used. The 
Piagetian triad is suggested as a mechanism to describe the schema development of integration by parts. The triad 
of the intra, inter and trans levels of schema development provides the structure for interpreting the students’ 
understanding of integration by parts and classifying their responses to the interview questions about integration 
by parts. We use mental constructions of the GD and primary objects of the EC to characterize the development of 
the students’ conceptualization of integration by parts in terms of the triad.  

Intra: A student at this level does not have any rational reasoning for choosing 𝑢𝑢 and 𝑑𝑑𝑑𝑑. He/she usually puts 
the first part of the integrand equal to 𝑢𝑢 and puts the rest equal to 𝑑𝑑𝑑𝑑. The student has problems in finding 𝑑𝑑𝑑𝑑 with 
use of the differential and also has problems in finding 𝑣𝑣 using integration. 

Inter: A student at this level can have correct choices for 𝑢𝑢 and 𝑑𝑑𝑑𝑑 but won’t always choose correctly. In some 
cases, he/she at first chooses incorrect choices for 𝑢𝑢 and 𝑑𝑑𝑑𝑑 and when he/she gets confused in solving part ∫𝑣𝑣𝑣𝑣𝑣𝑣 
then he/she changes correctly his/her choices for 𝑢𝑢 and 𝑑𝑑𝑑𝑑. The student can find 𝑑𝑑𝑑𝑑 and 𝑣𝑣 using the differential 
and integration.  

Trans: A student at this level pays attention to the next step (∫ 𝑣𝑣𝑣𝑣𝑣𝑣) for choosing proper choices for 𝑢𝑢 and 𝑑𝑑𝑑𝑑. 
The student has a coherence schema of integration by parts so that he/she recognizes whether a given integral can 
be solved by integration by parts or not.  

In APOS Theory two levels of analysis are proposed, one in terms of action, processes, objects and schemas 
which in this case should be based in the genetic decomposition presented, and other in terms of the schema 
development. When using the later type of analysis, the genetic decomposition should be described in terms of the 
characteristics of the levels of development of the schema. We used in our analysis the notion of schema 
development from APOS. The aim of APOS Theory is not to classify students or to place them in certain levels. The 
objective of the theory is to understand how a concept of a topic is constructed. To do so, students’ constructions 
are compared in order to determine those constructions that seem indispensable in the learning of that concept. It 
is not correct to talk about the levels of development of the schema as levels of students while they are levels of 
development of the schema, not of the students; in APOS Theory students show constructions corresponding to a 
level of the schema and they are characterized by the types of relations students demonstrate among the 
components of the schema (Trigueros, 2005). 
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Relation between EC, GD and Levels of Development of the Schema 
In this section we present a networking of two theories, APOS and OSA, and show some commonalities and 

some links between these theories and show the complementary nature of their constructs for integration by parts. 
In networking these theories, we considered an analysis in terms of comparing and contrasting some of the 
principles of both theories. In what follows in Tables 1 and 2, we describe specific links obtained as a result of our 
reflection on EC, GD and levels of the development of schema of integration by parts. 

 

Table 1 shows that each of the mental constructions in designed GD are complementary with the primary 
objects in designed EC. In Table 1, one can see the relation between processes in APOS and procedures in OSA, 
and also objects in APOS and propositions in OSA. Table 2 shows that each of the levels (intra, inter and trans) of 
the development schema is related to certain parts of GD and to certain parts of EC. For example, from Table 2 one 
can see which parts of primary objects in EC are related to the intra level, and also which parts of GD are related to 
this level. These relations are also presented for the two other levels; inter and trans. These tables help to identify 
deeper understanding between APOS and OSA, which is consistent with our goal in this research. 

RESULTS 
Students’ responses to the mathematical tasks were analyzed and their schemas were categorized into the intra, 

inter and trans levels described in Table 2. There were eleven students who had constructed their schemas at the 
intra level, eight students at the inter level, and four students at the trans level. An example of students’ responses 
from each level for Task b is described below. For each example, to relate OSA and APOS, the students’ responses 
were also analyzed based on EC of the OSA. 

Table 1. Relation between APOS and OSA 
APOS OSA 
Processes in APOS 
• Has developed a process conception of differentiation rules. 
• Has developed a process conception of differential (𝑢𝑢 = 𝑓𝑓(𝑥𝑥) then 
𝑑𝑑𝑑𝑑 = 𝑓𝑓′(𝑥𝑥)𝑑𝑑𝑑𝑑). 

• Has developed a process conception of integration’s table and 
substitution rule. 

• The student then coordinates previously constructed processes to 
a new process and applies them into the formula of Integration by 
parts, ∫ 𝑢𝑢 𝑑𝑑𝑑𝑑 = 𝑢𝑢𝑢𝑢 − ∫𝑣𝑣 𝑑𝑑𝑑𝑑. The coordination consists in first 
choosing terms of integrand for 𝑢𝑢 and 𝑑𝑑𝑑𝑑 and then finding 𝑑𝑑𝑢𝑢 
and 𝑣𝑣 using differential and Integration, respectively, and then 
substituting them in the formula. 

Procedures in OSA 
Pr0: A proper choice of 𝑢𝑢 and 𝑑𝑑𝑑𝑑. 
Pr1: Calculating new terms 𝑑𝑑𝑑𝑑 and 𝑣𝑣 with differentiation 
and integration, respectively.  
Pr2: Applying the formula of the equation ∫𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑢𝑢𝑢𝑢 −
∫𝑣𝑣𝑣𝑣𝑣𝑣.  
Pr3: Solving new integral,∫ 𝑣𝑣𝑣𝑣𝑣𝑣, that is easier than the last 
one (∫𝑢𝑢𝑢𝑢𝑢𝑢). 
 

Objects in APOS 
• Has developed an object conception of differentiation rules. 
• Has developed an object conception of differential (𝑢𝑢 = 𝑓𝑓(𝑥𝑥) then 
𝑑𝑑𝑑𝑑 = 𝑓𝑓′(𝑥𝑥)𝑑𝑑𝑑𝑑). 

• Has developed an object conception of integration’s table and 
substitution rule. 

• Process conception of integration by parts, encapsulates to an 
object conception as a totality. Having an object conception of 
integration by parts, one student can correctly and with reason 
recognize and choose proper terms of integrand for 𝑢𝑢 and 𝑣𝑣 for 
having an easier Integral for next step (∫ 𝑣𝑣 𝑑𝑑𝑑𝑑). 

Propositions in OSA 
P1: If 𝑢𝑢 = 𝑓𝑓(𝑥𝑥), where 𝑓𝑓 is a differentiable function, then 
the differential 𝑑𝑑𝑑𝑑 is an independent variable. The 
differential 𝑑𝑑𝑑𝑑 defined in terms of 𝑑𝑑𝑑𝑑 by the equation: 
𝑑𝑑𝑑𝑑 = 𝑓𝑓′(𝑥𝑥)𝑑𝑑𝑑𝑑. 
P2: If 𝑓𝑓′(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑, then using integration: 𝑣𝑣 = ∫𝑓𝑓′(𝑥𝑥)𝑑𝑑𝑑𝑑  
P3: If new integral (∫𝑣𝑣𝑣𝑣𝑣𝑣) is not solvable or more difficult 
than the first integral (∫𝑢𝑢𝑢𝑢𝑢𝑢), it should be better to change 
and choose better terms for 𝑢𝑢 and 𝑑𝑑𝑑𝑑.  
P4: If one choose proper 𝑢𝑢 and 𝑑𝑑𝑑𝑑 then the integral ∫𝑣𝑣𝑣𝑣𝑣𝑣 
will be easier then the integral ∫ 𝑢𝑢𝑢𝑢𝑢𝑢. 

Schema in APOS 
All actions, process, objects and other schemas 

EC in OSA 
All primary objects 
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 First group: Intra Level 
Student A was one of the students who had constructed a schema at the intra level. Some parts of her answer 

to Task b are presented below (Figure 1). 
“I choose 𝑢𝑢 equal to 𝑥𝑥 and 𝑑𝑑𝑑𝑑 equal to 𝑙𝑙𝑙𝑙𝑙𝑙,… Ok now I find the differential (she pointed to the 𝑥𝑥 = 𝑢𝑢)… So I have one 𝑑𝑑𝑑𝑑 

equal to one 𝑑𝑑𝑑𝑑… For finding 𝑣𝑣 I have to integrate the second equation (she pointed to the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑑𝑑𝑑𝑑)… Oh, what is the 
integral 𝑙𝑙𝑙𝑙𝑙𝑙?!... I think its integral is one over 𝑥𝑥… Now I use the formula for integration by parts … The integral 𝑥𝑥 to the 
power minus one is equal to 𝑥𝑥 to the power minus one plus one over minus one plus one …”. 

 
Figure 1. Student A’s response (Intra level) 

Student A did not have any rational reason for choosing 𝑢𝑢 and 𝑑𝑑𝑑𝑑. She put the first term of integrand (i.e., 𝑥𝑥) 
equal to 𝑢𝑢 and put the rest (i.e., 𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑) equal to 𝑑𝑑𝑑𝑑. Student A had difficulties in finding 𝑣𝑣 using integration. Due 
to incorrect choices for 𝑢𝑢 and 𝑑𝑑𝑑𝑑 the last answer was completely wrong.  

Table 2. Relation between GD, EC and levels of schema of implicit differentiation 
EC (OSA) GD (APOS) Levels of development of the 

Schema (APOS) 
Pr1: Calculating new terms 𝑑𝑑𝑑𝑑 and 𝑣𝑣 with 
differentiation and integration, respectively, 
but no always.  
Pr2: Applying the formula of the equation 
∫𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑢𝑢𝑢𝑢 − ∫𝑣𝑣𝑣𝑣𝑣𝑣. 

Has developed a process conception of 
differentiation rules. 
Has developed a process conception of 
differential (𝑢𝑢 = 𝑓𝑓(𝑥𝑥) then 𝑑𝑑𝑑𝑑 = 𝑓𝑓′(𝑥𝑥)𝑑𝑑𝑑𝑑). 
Has developed a process conception of 
Integration’s table (e.g. knowing integrals 
such as ∫𝑥𝑥𝑛𝑛 𝑑𝑑𝑑𝑑, ∫ sin 𝑥𝑥 𝑑𝑑𝑑𝑑 and …) and 
substitution rule. 

Intra: The student at this level 
don not have any rational reason 
for choosing 𝑢𝑢 and 𝑑𝑑𝑑𝑑. He/she 
usually puts the first part of 
integrand equal to 𝑢𝑢 and the rest 
puts equal to 𝑑𝑑𝑑𝑑. The student has 
problems in finding 𝑑𝑑𝑑𝑑 with use 
of the differential and also has 
problems in finding 𝑣𝑣 using 
integration. 

P1: If 𝑢𝑢 = 𝑓𝑓(𝑥𝑥), where 𝑓𝑓 is a differentiable 
function, then the differential 𝑑𝑑𝑑𝑑 is an 
independent variable. The differential 𝑑𝑑𝑑𝑑 
defined in terms of 𝑑𝑑𝑑𝑑 by the equation: 𝑑𝑑𝑑𝑑 =
𝑓𝑓′(𝑥𝑥)𝑑𝑑𝑑𝑑. 
P2: If 𝑓𝑓′(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑, then using integration: 
𝑣𝑣 = ∫𝑓𝑓′(𝑥𝑥)𝑑𝑑𝑑𝑑  
Pr3: Solving new integral,∫ 𝑣𝑣𝑣𝑣𝑣𝑣, that is easier 
than the last one (∫𝑢𝑢𝑢𝑢𝑢𝑢). 
P3: If new integral (∫𝑣𝑣𝑣𝑣𝑣𝑣) is not solvable or 
more difficult than the first integral (∫𝑢𝑢𝑢𝑢𝑢𝑢), it 
should be better to change and choose better 
terms for 𝑢𝑢 and 𝑑𝑑𝑑𝑑. 

Has developed an object conception of 
differentiation rules. 
Has developed an object conception of 
differential (𝑢𝑢 = 𝑓𝑓(𝑥𝑥) then 𝑑𝑑𝑑𝑑 = 𝑓𝑓′(𝑥𝑥)𝑑𝑑𝑑𝑑). 
Has developed an object conception of 
integration’s table.  
The student then coordinates previously 
constructions to a new process and applies 
them into the formula of integration by parts, 
∫𝑢𝑢 𝑑𝑑𝑑𝑑 = 𝑢𝑢𝑢𝑢 − ∫𝑣𝑣 𝑑𝑑𝑑𝑑. The coordination 
consists in first choosing terms of integrand 
for 𝑢𝑢 and 𝑑𝑑𝑑𝑑 and then finding 𝑑𝑑𝑑𝑑 and 𝑣𝑣 using 
differential and Integration, respectively, and 
then substituting them in the formula. 

Inter: The student at this level can 
have correct choices for 𝑢𝑢 and 𝑑𝑑𝑑𝑑 
but no always. For some cases 
he/she at first chooses incorrect 
choices for 𝑢𝑢 and 𝑑𝑑𝑑𝑑 and when 
he/she gets confused in solving 
the integral ∫𝑣𝑣𝑣𝑣𝑣𝑣 then he/she 
changes correctly his/her choices 
for 𝑢𝑢 and 𝑑𝑑𝑑𝑑. The student can 
find 𝑑𝑑𝑑𝑑 and 𝑣𝑣 using the 
differential and integration.  
 

P4: If one choose proper 𝑢𝑢 and 𝑑𝑑𝑑𝑑 then the 
integral ∫𝑣𝑣𝑣𝑣𝑣𝑣 will be easier then the integral 
∫𝑢𝑢𝑢𝑢𝑢𝑢. 
 

Process conception of integration by parts, 
encapsulates to an object conception as a 
totality. Having an object conception of 
integration by parts, one student can correctly 
and with reason recognize and choose proper 
terms of integrand for 𝑢𝑢 and 𝑣𝑣 for having an 
easier Integral for next step (∫𝑣𝑣 𝑑𝑑𝑑𝑑). 

Trans: The student at this level 
have attention to the next step 
(∫𝑣𝑣𝑣𝑣𝑣𝑣) for choosing proper 
choices for 𝑢𝑢 and 𝑑𝑑𝑑𝑑. The student 
has a coherence schema of 
Integration by parts so that 
he/she recognizes whether a 
given integral can be solved by 
integration by parts or not.  
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In relation to EC of OSA, student A understood and did procedures Pr1 and Pr2. With respect to arguments in 
EC, she could not respond correctly to the tasks. It is noteworthy that student A could not do Pr0 and Propositions 
P1 and P2 correctly, consequently, she could not evaluate integrals correctly for the tasks. 

Second Group: Inter Level 
Student B was one of the students that had constructed a schema at the inter level (Figure 2). Some of his 

thinking about Task b is provided below. 
“I put 𝑥𝑥 equal to 𝑢𝑢 and ln 𝑥𝑥 𝑑𝑑𝑑𝑑 equal to 𝑑𝑑𝑑𝑑… from 𝑥𝑥 equal to 𝑢𝑢 I derive … so, 𝑑𝑑𝑑𝑑 is equal to 𝑑𝑑𝑑𝑑… from ln 𝑥𝑥 𝑑𝑑𝑑𝑑 equal to 

𝑑𝑑𝑑𝑑 I integrate … I know that integral ln 𝑥𝑥 using integration by parts is equal to 𝑥𝑥 ln 𝑥𝑥 minus 𝑥𝑥 … (Then he used the formula 
for integration by parts and had difficulties with solving the next integral) … oh, integral 𝑥𝑥 𝑙𝑙𝑙𝑙 𝑥𝑥 minus 𝑥𝑥 is more difficult than 
the first one… so, sorry my bad … I have to change my choices for 𝑢𝑢 and 𝑑𝑑𝑑𝑑… ln 𝑥𝑥 equal to 𝑢𝑢, so one over 𝑥𝑥 equal to 𝑑𝑑𝑑𝑑… It’s 
good because one over 𝑥𝑥 is much easier than ln 𝑥𝑥… now I have to put 𝑥𝑥 𝑑𝑑𝑑𝑑 equal to 𝑑𝑑𝑑𝑑, so using integration I have 𝑣𝑣 equal to 
𝑥𝑥 to the power two over two … Ok, I use the formula for integration by parts… “ 

 
Figure 2. Student B’s response (Inter level) 

At first, student B chose incorrect choices for 𝑢𝑢 (i.e., 𝑥𝑥) and 𝑑𝑑𝑑𝑑 (i.e., ln 𝑥𝑥  𝑑𝑑𝑑𝑑) and when he got confused in solving 
the integral ∫ 𝑣𝑣𝑣𝑣𝑣𝑣 (i.e., ∫(𝑥𝑥 ln 𝑥𝑥 − 𝑥𝑥)𝑑𝑑𝑑𝑑) which was more difficult than the first one (i.e., ∫𝑥𝑥 ln 𝑥𝑥  𝑑𝑑𝑑𝑑), then he correctly 
changed his choices for 𝑢𝑢 (i.e., ln 𝑥𝑥) and 𝑑𝑑𝑑𝑑 (i.e, 𝑥𝑥 𝑑𝑑𝑑𝑑) and got an easier integral (i.e., ∫ 𝑥𝑥2

2
1
𝑥𝑥
𝑑𝑑𝑑𝑑) than the first one. The 

student could correctly find 𝑑𝑑𝑑𝑑 and 𝑣𝑣 using the differential and integration, respectively.  

In relation to EC of OSA, student B understood and did procedures Pr0, P1, Pr2 and Pr3, and propositions P1, 
P2 and P3. With respect to arguments in EC, he had difficulties in procedure pr0 and proposition P4, so due to those 
he had problems in Task b.  

Third group: Trans Level 
Student C was one of the students that had constructed a schema at the trans level (Figure 3). Some of her 

thinking about Task b is provided below.  
“For 𝑢𝑢 I choose ln 𝑥𝑥 because its derivative, which is one over 𝑥𝑥, is much easier than itself and it will help me to get an easier 

integral in the next step … So I put the rest part, which is 𝑥𝑥 𝑑𝑑𝑑𝑑, equal to 𝑑𝑑𝑑𝑑… My 𝑑𝑑𝑑𝑑 is one over 𝑥𝑥 dx and my 𝑣𝑣 is equal to 𝑥𝑥 
to the power two over two … Now using the formula for integration by parts I can easily find the answer … “ 

 
Figure 3. Student C’s response (Trans level) 

When Student C was thinking about proper choices for 𝑢𝑢 and 𝑑𝑑𝑑𝑑 he had attention to the next step (∫𝑣𝑣𝑣𝑣𝑣𝑣) in 
order to get an easier integral.  

In relation to EC of the OSA, Student C correctly evaluated the tasks as he activated all the primary objects of 
the EC. He correctly identified the proper terms for 𝑢𝑢 and 𝑑𝑑𝑑𝑑, and correctly used differentials and integration to 
find 𝑑𝑑𝑑𝑑 and 𝑣𝑣 and plugged them into the formula for integration by parts and solved the integral ∫𝑣𝑣𝑣𝑣𝑣𝑣 correctly. 
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Some of Students’ Difficulties in Solving Integration by Parts Tasks 
Since most students in our study have constructed their schemas at the intra and inter levels, we present some 

details about their problems of understanding, especially those problems that were common among them. 
The students at the intra level had difficulties in integration to find 𝑣𝑣 (48% of students). In the following we 

brought some parts of the explanations of one of students who showed this issue during his interview when he was 
solving Task a. 

“… Ok, and 𝑒𝑒𝑥𝑥𝑑𝑑𝑑𝑑 equal to 𝑑𝑑𝑑𝑑… for finding 𝑣𝑣 I have to integrate … I don’t know what is the answer of integral 𝑒𝑒𝑥𝑥… I 
can’t continue …”.  

In regard to the framework of the study, these students cannot activate proposition P3 and have not developed 
an object conception of integration’s table.  

It seems that some students at the inter level had a procedural understanding of integration by parts. Hiebert 
and Lefevre (1986) described conceptual understanding as part of a network comprised of individual pieces of 
information and the relationships between these pieces of information. Hiebert and Lefevre also defined procedural 
understanding as including both a familiarity with the symbol representation system of mathematics and 
knowledge of rules for solving exercises in mathematics. They noted that, while conceptual understanding must be 
learned with meaning, procedural knowledge may or may not be learned meaningfully. In fact students with a 
procedural understanding of integration by parts did not know the reasoning of processes which they were doing. 
They followed the steps and rules without reasons and if they could not get the simpler integral then they came 
back to their solutions and changed their choices for 𝑢𝑢 and 𝑑𝑑𝑑𝑑 and again followed all steps.  

We now show as an example some parts of the explanations of one of the students at the inter level that showed 
this problem when he was solving Task a. 

“I put 𝑢𝑢 equal to 𝑒𝑒𝑥𝑥 and 𝑑𝑑𝑑𝑑 equal to 𝑥𝑥…So, 𝑑𝑑𝑑𝑑 equal to 𝑒𝑒𝑥𝑥𝑑𝑑𝑑𝑑 … and 𝑣𝑣 equal to 𝑥𝑥 to the power two over two… (Then the 
student used the formula for integration by parts and plugged 𝑢𝑢, 𝑣𝑣 and 𝑑𝑑𝑑𝑑 inside that but had difficulties in solving ∫𝑣𝑣𝑣𝑣𝑣𝑣)… 
Now I have to evaluate ∫ 𝑥𝑥2

2
𝑒𝑒𝑥𝑥𝑑𝑑𝑑𝑑 … It’s difficult for me… I try to change my 𝑢𝑢 and my 𝑑𝑑𝑑𝑑 … I put my 𝑢𝑢 equal to 𝑥𝑥 and my 

𝑑𝑑𝑑𝑑 equal to 𝑒𝑒𝑥𝑥𝑑𝑑𝑑𝑑… I hope I can solve with these choices… “. 
In regard to the framework of the study, these students cannot activate proposition P4 and have not developed 

an object conception of integration by parts, actually they cannot correctly and with reasoning recognize and choose 
proper terms of integrand for 𝑢𝑢 and 𝑑𝑑𝑑𝑑 for having an easier integral for the next step (∫ 𝑣𝑣 𝑑𝑑𝑑𝑑). It should be noted 
that if a student did not explain his/her reason for choosing u and dv, we asked him/her to describe more about 
them. In Table 3, the students’ difficulties, associated with implicit differentiation are reported. 

DISCUSSION AND CONCLUSION 
This research is a combined use of two theories, APOS and OSA (Font et al., 2016), as lenses to explore students’ 

understanding of integration by parts. Results show that most of the students in our research have major difficulties 
in doing the practical work and developing the mental constructions needed to solve the tasks, particularly those 
mental constructions that have to be made to choose proper choices for 𝑢𝑢 and 𝑑𝑑𝑑𝑑 so that the second integral will be 
easier than the integral they started with, which is why most of the students in our study have constructed their 
schemas at the intra or inter level of development of the integration by parts schema. We also observed that 56% 
students in our research, especially at the intra level, had some difficulties in prerequisite concepts like functions, 
differentiation, differentials and basic integration. This is line with findings of Mahir (2009) where the author 
concluded that several students could not solve conceptual questions regarding integrals because they had 
difficulties in prerequisite knowledge (e.g., derivatives) which is necessary for learning integrals.  

The difference between students at the inter and trans level was that students at the inter level initially chose 𝑢𝑢 
and 𝑑𝑑𝑑𝑑 without precision, and then, if they had difficulties in solving the next integral (i.e., ∫𝑣𝑣𝑣𝑣𝑣𝑣), they returned 
and changed their choices for 𝑢𝑢 and 𝑑𝑑𝑑𝑑. But the students at the trans level from the beginning paid attention to the 
choices for 𝑢𝑢 and 𝑑𝑑𝑑𝑑 in order to get a simpler integral. We can say that the students at the inter level had a procedural 
understanding while students at the trans level had a conceptual understanding of integration by parts (Borji et al., 

Table 3. Students’ difficulties regarding integration by parts 
Students’ difficulty Explanation 
Students did not choose 𝑢𝑢 and 𝑑𝑑𝑑𝑑 correctly.  By correctly, we mean that ∫𝑣𝑣𝑣𝑣𝑣𝑣 was not easier to solve compared to∫𝑢𝑢𝑢𝑢𝑢𝑢. 
Students’ difficulty regarding derivatives. Students had difficulties in finding 𝑑𝑑𝑑𝑑 using differentiation. 
Students’ difficulty regarding integrals. Students had difficulties in finding 𝑣𝑣 using integration. 
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2018). Similar to the finding of the present study, Mateus (2016) stated that students usually have difficulties to 
determine proper choices for 𝑢𝑢 and 𝑑𝑑𝑑𝑑. 

Some mathematics concepts seem like they are only a series of symbolic procedures and formulas, and students 
might follow these procedures even without knowing their purpose, and can solve related questions correctly even 
without knowing why the methods for doing so work (Oaks, 1990). Integration by parts can be one example of 
these types of symbolic techniques in Calculus. Although symbolic and algebraic techniques and formulas can be 
taught with procedural teaching, behind each of these symbolic techniques and formulas there are reasons and 
causes (Oaks, 1990), so these techniques can be taught with conceptual teaching and can be learned conceptually 
with their reasoning. Although some students who might have a procedural understanding and who can follow 
some rules (without proper understanding of integration by parts) can somewhat successfully accomplish the tasks 
of integration by parts, as it has been said, the main difference between students who have made a coherent schema 
of integration by parts and such students are that the students at the trans level, know the reason for using any 
technique and concept and know, where, and when, and for what they have to use each of them. This was clearly 
visible during students’ interviews. 

Teachers, when teaching integration by parts, should emphasize that students choose 𝑢𝑢 so that its derivative 
(i.e., 𝑑𝑑𝑑𝑑) is more convenient than itself, and choose 𝑑𝑑𝑑𝑑 so that they can find its integral (∫𝑑𝑑𝑑𝑑), which is 𝑣𝑣. In addition, 
the accuracy of students should begin with the point that the integral ∫𝑣𝑣𝑣𝑣𝑣𝑣 should be easily solvable, or at least 
that it should be easier than the first one (∫𝑢𝑢𝑢𝑢𝑢𝑢) they started with. 

In recent studies of mathematics education, the use of networking and combining theories has grown to analyze 
students’ understanding (Badillo et al., 2011; Haspekian et al., 2013; Pino-Fan et al., 2015). Two of the theories, that 
are appropriate for exploring students’ understanding and their combination has been used in recent research, are 
APOS and OSA theories (Borji et al., 2018; Font et al, 2016). OSA theory helped us to analyze mathematical practices 
by identifying primary objects that are activated while engaging in integration by parts. Using APOS theory we 
could find mental constructions that one student might needs to learn and solve integration by parts tasks. The 
theory of development schema characterized students’ schemas of integration by parts and showed their problems, 
misunderstandings and shortcomings. This theory, which is one part of APOS (Arnon et al., 2014) described mental 
constructions that the students at the intra and inter levels need to develop their schema for integration by parts 
and reach the trans level.  

The future direction of this study is to analyze the way of teaching, both conceptual teaching and procedural 
teaching, that Calculus’ lectures use to teach integration by parts and effects that each of these teaching ways has 
on students’ understanding. As we said before, the combined use of APOS and OSA gave us a better insight to 
explore students’ understanding of integration by parts, so the networking of these theories can help researchers 
to analyze students’ understanding of other mathematics concepts. We also suggest that in future studies a larger 
sample or population be used to give consistency and stability to the conclusions of this work. 

REFERENCES 
Anton, H., Bivens, I., & Davis, S. (2010). Calculus: early transcendentals. Jefferson City (Missouri): Wiley Global 

Education. 
Arnon, I., Cottrill, J., Dubinsky, E., Oktac, A., Roa, S., Trigueros, M., & Weller, K. (2014). APOS Theory: A Framework 

for Research and Curriculum Development in Mathematics Education. New York, Heidelberg, Dordrecht, 
London: Springer. 

Asiala, M., Cottrill, J., Dubinsky, E., & Schwingendorf, K. E. (1997). The development of students’ graphical 
understanding of the derivative. Journal of Mathematical Behavior, 16(4), 399-430. 
https://doi.org/10.1016/S0732-3123(97)90015-8  

Badillo, E., Azcárate, C., & Font, V. (2011). Analysis of Mathematics teachers’ level of understanding of the objects 
𝑓𝑓′(𝑎𝑎) and 𝑓𝑓′(𝑥𝑥). Enseñanza de las ciencias, 29(2), 191-206. https://doi.org/10.5565/rev/ec/v29n2.546  

Bikner-Ahsbahs, A., & Prediger, S. (eds) (2014). Networking of theories as a research practice in mathematics education. 
Advances in Mathematical Education. Springer. https://doi.org/10.1007/978-3-319-05389-9  

Borji, V., Alamolhodaei, H., & Radmehr, F. (2018). Application of the APOS-ACE Theory to improve Students’ 
Graphical Understanding of Derivative. EURASIA Journal of Mathematics, Science and Technology Education, 
14(7), 2947-2967. https://doi.org/10.29333/ejmste/91451  

Borji, V., Font, V., Alamolhodaei, H., & Sánchez, A. (2018). Application of the Complementarities of Two Theories, 
APOS and OSA, for the Analysis of the University Students’ Understanding on the Graph of the Function 
and its Derivative. EURASIA Journal of Mathematics, Science and Technology Education, 14(6), 2301-2315. 
https://doi.org/10.29333/ejmste/89514  

https://doi.org/10.1016/S0732-3123(97)90015-8
https://doi.org/10.5565/rev/ec/v29n2.546
https://doi.org/10.1007/978-3-319-05389-9
https://doi.org/10.29333/ejmste/91451
https://doi.org/10.29333/ejmste/89514


 
 
Borji & Font / Integration by Parts: Combined Use of APOS and OSA 

 

12 / 13 
 

Clark, J. M., Cordero, F., Cottrill, J., Czarnocha, B., DeVries, D. J., St. John, D., Tolias, G., & Vidakovic, D. (1997). 
Constructing a schema: The case of the chain rule? Journal of Mathematical Behavior, 16(4), 345-364. 
https://doi.org/10.1016/S0732-3123(97)90012-2  

Font, V., & Contreras, A. (2008). The problem of the particular and its relation to the general in mathematics 
education. Educational Studies in Mathematics, 69(1), 33-52. https://doi.org/10.1007/s10649-008-9123-7  

Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational 
Studies in Mathematics, 82(1), 97–124. https://doi.org/10.1007/s10649-012-9411-0  

Font, V., Trigueros, M., Badillo, E., & Rubio, N. (2016). Mathematical objects through the lens of two different 
theoretical perspectives: APOS and OSA. Educational Studies in Mathematics, 91(1), 107–122. 
https://doi.org/10.1007/s10649-015-9639-6  

Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. 
ZDM. The International Journal on Mathematics Education, 39(1), 127-135. https://doi.org/10.1007/s11858-006-
0004-1  

Haspekian, M., Bikner-Ahsbahs, A., & Artigue, M. (2013). When the fiction of learning is kept: A case of networking 
two theoretical views. In A. Lindmeier, & A. Heinze (Eds.), Proceedings of the 37th Conference of the 
International Group for the Psychology of Mathematics Education, Vol. 3, pp. 9–16. Kiel, Germany: PME. 

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. 
In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1-27). Hillsdale, NJ, US: 
Lawrence Erlbaum Associates, Inc. 

Jones, S. R. (2013). Understanding the integral: Students’ symbolic forms. The Journal of Mathematical Behavior, 32(2), 
122–141. https://doi.org/10.1016/j.jmathb.2012.12.004  

Kiat, S. E. (2005). Analysis of students’ difficulties in solving integration problems. The Mathematics Educator, 9(1), 
39–59. 

Kouropatov, A., & Dreyfus, T. (2014). Learning the integral concept by constructing knowledge about 
accumulation. ZDM Mathematics Education, 46(4), 533–548. https://doi.org/10.1007/s11858-014-0571-5  

Llinares, S., Boigues, F., & Estruch, V. (2010). Desarrollo de un esquema de la integral definida en estudiantes de 
ingenierıas relacionadas con las ciencias de la naturaleza. Un analisis a travesdela logica Fuzzi. Revista 
Latinoamericana de Investigacion en Matematica Educativa, 13, 255–282. 

Mahir, N. (2009). Conceptual and procedural performance of undergraduate students in integration. Int J Math Educ 
Sci Technol, 40(2), 201–211. https://doi.org/10.1080/00207390802213591  

Mateus, E. (2016). Análisis Didáctico a un Proceso de Instrucción del Método de Integración por Partes [Teaching 
Analysis to Process Integration Method Instruction by Parties]. BOLEMA, 30(55), 559–585. 
https://doi.org/10.1590/1980-4415v30n55a13  

Piaget, J., & García, R. (1983). Psychogenesis and the history of science. New York: Columbia University Press. 
Pino-Fan, L., Font, V., Gordillo, W., Larios, V. & Breda, A. (2017). Analysis of the Meanings of the Antiderivative 

Used by Students of the First Engineering Courses. International Journal of Science and Mathematics Education, 
16(6), 1091-1113. https://doi.org/10.1007/s10763-017-9826-2  

Pino-Fan, L., Godino, J. D., & Font, V. (2018). Assessing key epistemic features of didactic-mathematical knowledge 
of prospective teachers: the case of the derivative. Journal of Mathematics Teacher Education. 21(1), 63-94. 
https://doi.org/10.1007/s10857-016-9349-8  

Pino-Fan, L., Guzmán, I., Duval, R., & Font, V. (2015). The theory of registers of semiotic representation and the 
onto-semiotic approach to mathematical cognition and instruction: linking looks for the study of 
mathematical understanding. In Beswick, K., Muir, T., & Wells, J. (Eds.). Proceedings of the 39th Conference 
of the International Group for the Psychology of Mathematics Education, Vol. 4, pp. 33-40. Hobart, Australia: 
PME. 

Thomas, G. B., Weir, M. D., Hass, J., & Giordano, R. F. (2010). Thomas’ calculus: Early transcendentals. Boston: Pearson 
Addison-Wesley.  

Trigueros, M. (2005). La nocion del esquema en la investigacion en matematica educativa a nivel superior. Educacion 
Matematica, 17(1), 5–31. 

Oaks, A.B. (1990). Writing to learn mathematics: Why do we need it and how can it help us? Paper presented at 
Association of Mathematics Teachers of New York State Conference, November 1990, Ellenville, NY. 

Orton, A. (1983). Students’ understanding of integration. Educ Stud Math, 14(1), 1-18. 
https://doi.org/10.1007/BF00704699  

https://doi.org/10.1016/S0732-3123(97)90012-2
https://doi.org/10.1007/s10649-008-9123-7
https://doi.org/10.1007/s10649-012-9411-0
https://doi.org/10.1007/s10649-015-9639-6
https://doi.org/10.1007/s11858-006-0004-1
https://doi.org/10.1007/s11858-006-0004-1
https://doi.org/10.1016/j.jmathb.2012.12.004
https://doi.org/10.1007/s11858-014-0571-5
https://doi.org/10.1080/00207390802213591
https://doi.org/10.1590/1980-4415v30n55a13
https://doi.org/10.1007/s10763-017-9826-2
https://doi.org/10.1007/s10857-016-9349-8
https://doi.org/10.1007/BF00704699


 
 

EURASIA J Math Sci and Tech Ed 

 

13 / 13 
 

Radmehr, F., & Drake, M. (2017). Exploring students’ mathematical performance, metacognitive experiences and 
skills in relation to fundamental theorem of calculus. International Journal of Mathematical Education in Science 
and Technology, 48(7), 1043-1071. https://doi.org/10.1080/0020739X.2017.1305129  

Stewart, J. (2010). Calculus, 7th Edition. Brooks/Cole Cengage Learning, Mason. 
Thompson, P. W. (1994). Images of rate and operational understanding of the fundamental theorem of calculus. 

Educ Stud Math, 26(2), 229-274. https://doi.org/10.1007/BF01273664  
Weller, K., Arnon, I., & Dubinsky, E. (2009). Pre-service teachers’ understanding of the relation between a fraction 

or integer and its decimal expansion. Canadian Journal of Science, Mathematics, and Technology Education, 9(1), 
5-28. https://doi.org/10.1080/14926150902817381  

 
 

http://www.ejmste.com 

https://doi.org/10.1080/0020739X.2017.1305129
https://doi.org/10.1007/BF01273664
https://doi.org/10.1080/14926150902817381

	INTRODUCTION
	THEORETICAL FRAMEWORK
	APOS Theory
	OSA Theory
	Relation between APOS and OSA

	METHOD
	Tasks
	A look from OSA: Epistemic Configuration of Primary Objects
	Practice
	Languages
	Procedures
	Propositions
	Arguments

	A Look from APOS: Genetic Decomposition
	Relation between EC, GD and Levels of Development of the Schema

	RESULTS
	Some of Students’ Difficulties in Solving Integration by Parts Tasks

	DISCUSSION AND CONCLUSION
	REFERENCES

