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ABSTRACT 
This paper reports on an exploration of preservice teachers’ understanding of the 
quadratic function concept in Zimbabwe. These concepts were taught to preservice 
teachers studying for a diploma in Education wishing to specialize in the teaching of 
Ordinary level mathematics. Concerns about high Mathematics failure rate in 
Zimbabwean Secondary Schools have prompted this investigation into finding out if 
teachers’ understanding of quadratic function concept could be the cause. The study 
adopted the APOS (action-process-object-schema) to investigate their conceptual 
understanding of the concepts. Data were generated from students’ responses to a 
written task and follow up interviews were used to solicit information from the 
preservice teachers. A designed genetic decomposition for quadratic concepts was 
used as an analysis tool. The findings of the study also revealed majority of the pre-
service teachers seemed to be operating at the action level of understanding, with very 
few teachers who have reached the object level. It was noted that the preliminary 
genetic decomposition failed to accommodate all students’ responses which lead to 
the development of a modified genetic decomposition. 
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INTRODUCTION 
The study particularly focuses on function concept because of its relevance in a variety of situations. Functions in 
general are considered to be some of the most important topics in mathematics (Cooney & Wilson, 1993; Dreyfus 
& Eisenberg, 1984; Romberg, Carpenter, & Fennema, 1993; Zaslavsky, 1997), cited in Parent 2015. Mathematics is 
described as the queen and servant of all school subjects, since it cuts across the school curricula (Akpan, 1987; 
Fajemidagba, 1986). It is generally linked to the development of any nation in the world. It is actually a discipline 
that almost every sector calls for in the world. In Zimbabwe, both primary and secondary teacher training colleges 
have ordinary level mathematics as requirement for enrolment to prospective teachers. The focus of tertiary 
education policy in Zimbabwe is mainly rooted in Science, Technology, Engineering and Mathematics (S.T.E.M). It 
is noted with great concern that in secondary schools, these subjects are poorly performed. This study will mainly 
focus on finding out if the quality of teachers produced from teachers’ colleges could be the cause of this situation. 

Ndlovu and Brijall (2015) purported that many students performed badly in mathematics because their learning 
is associated with a lack of conceptual understanding of concepts. Learners can display conceptual understanding 
which can be referred to as an integrated and functional grasp of mathematical ideas. When learners have 
conceptual understanding they know more than isolated facts and methods. They understand why a mathematical 
idea is important and even the kinds of contexts in which it is useful. In addition to that, they have their knowledge 
organised into a coherent whole which will make it possible to learn new ideas by connecting those ideas to what 
they already know. Conceptual understanding also supports retention of facts. When students have conceptual 
understanding they can even try to explain a method to themselves and try to correct it if necessary, (Jojo, 2011). 
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In colleges, lecturers have worked with students from different Mathematical backgrounds, varying from little 
understanding of Mathematical concepts to more sophisticated ways of thinking of Mathematical concepts. The 
student teachers under study have their ages ranging from 19 years to 40 years. This implies that some have since 
left school while others are fresh from school resulting in different levels of understanding concepts. Despite the 
differences in abilities of students, the one issue that seems to be common to all is that students have an APOS level 
at which they are operating as they deal with quadratic functions. It was therefore, important for the researcher to 
investigate on the levels the preservice teachers are operating on quadratic functions before they go for Teaching 
Practice Attachment (TPA). It is the goal of this study to gain more insight about the ways in which (preservice 
teachers) or student teachers understand the quadratic function concept at entry point to their course. 

Sets, functions and coordinate geometry are one of the first modules offered to first years as they get into college. 
The researchers decided to investigate on quadratic functions because it is one of the topics entailed in this module 
and is poorly performed by “O” level students. From the researchers teaching experiences at secondary school, the 
topic on quadratic equations are done badly at Ordinary level. Concepts covered include parabolas, vertices, 
intercepts and vertex form. The researchers happened to have taught this module for several years and discovered 
that during lectures most students were not comfortable to explain some of these concepts to their colleagues. It 
was also noted that averagely the students did not perform well on the end of module test implying that they would 
not have understood the concepts. The researchers has been particularly interested in not only how the student 
teachers understand quadratic functions, but also why they choose certain strategies and procedures for solving 
quadratic functions. The researchers’ were interested in researching the common misconceptions that students have 
about quadratic functions and the most effective teaching strategies that will help their pupils understand 
quadratics much better. 

LITERATURE REVIEW 
Parent (2015) views a function as a relation with every element in the domain having a unique image. In this 

study, functions are narrowed down to quadratic function concept. Mathematical understanding basically exists as 
procedural knowledge, conceptual knowledge or both. Conceptual understanding involves content mastery where 
knowledge can be generated and established through many relations between existing and prior knowledge and 
transferred through reconstruction of procedures (Donevska-Todorova, 2016). Procedural knowledge is chiefly 
concerned with steps followed as one learns a concept. Jojo (2011) argues that learners with conceptual 
understanding can easily explain the methods to their colleagues resulting in fact retention and reconstruction 
when forgotten. Kotsopoulos (2007) cited in Parent (2015) points three forms of the quadratic function which are 
the standard form, factored form, and the vertex form. Students get confused when quadratic function concepts are 
presented in different ways which they are not used to. The structure 𝑦𝑦 = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 (where a ≠ 0 and a, b and c 
are constants) is the standard form of a quadratic function form revealing the location of the y-intercept (0, c). The 
vertex form: 𝑦𝑦 = 𝑎𝑎 (𝑥𝑥 − 𝑝𝑝)2 + 𝑝𝑝 clearly highlights the turning point of the parabola (vertex) represented by V (𝑝𝑝, 𝑞𝑞). 
Lastly, the factored form: 𝑦𝑦 = 𝑎𝑎 (𝑥𝑥 − 𝑥𝑥1 )(x−𝑥𝑥2) indicating the position of the x-intercept (𝑥𝑥1; 0) and (𝑥𝑥2 ; 0) 
(Zaslavsky, 1997; Ellis & Grinstead, 2008). Kotsopoulos gives the example of 𝑥𝑥2 + 3𝑥𝑥 + 7 = 𝑥𝑥 + 4 being not in 
standard form and causing students trouble when asked to perform various tasks with it. Graph associated with 
quadratic functions is called a parabola (Chazan, 1992). In order to effectively discuss the effects of varying 
constants on the function 𝑦𝑦 = ( 𝑎𝑎𝑥𝑥2 +  𝑏𝑏 𝑥𝑥 + 𝑐𝑐), Ibeawuchi (2010) noticed that as the value of 𝑎𝑎 got bigger, the 
thinner (steeper) the graph became. Also, a decrease in the value of 𝑎𝑎 , resulted in the graph becoming more shallow. 
Changing the value of 𝑎𝑎 to a negative, resulted in the parabola being reflected about the x-axis. For the same 
parabola, changing the values of 𝑏𝑏 maintaining the values of 𝑎𝑎 and 𝑐𝑐 unchanged, caused shifts for the range of 
values changed, however, the parabola remained the same in terms of its shape and direction. Altering value of c 
resulted in graph shifting along the y axis by 𝑐𝑐 units (up if c is non negative and down if c is negative). The line 
𝑥𝑥 =  −  𝑏𝑏

2𝑎𝑎
 is the axis of symmetry irrespective of the value of c. To obtain the value of y at 𝑥𝑥 =  −  𝑏𝑏

2𝑎𝑎
 which is the 

turning point of the parabola, there is need to substitute 𝑥𝑥 =  −  𝑏𝑏 
2𝑎𝑎

 into the equation 𝑦𝑦 =  𝑎𝑎𝑥𝑥2  + 𝑏𝑏 𝑥𝑥 + 𝑐𝑐, (Owens, 

Contribution of this paper to the literature 

• The study focused on finding out if the quality of teachers produced from teachers colleges is the ones 
causing high failure rate in mathematics in Zimbabwean Secondary Schools. 

• Identification of preservice teachers understanding of quadratic function concepts was described in terms 
of APOS theory (action, process, object, schema), so as reveal the specific mental construction made. 

• The results of this study revealed that the preservice teachers are operating at different conceptual levels of 
understanding leading to use of different teaching instructional strategies in secondary schools. It is 
important for teachers to understand concepts clearly before they teach the pupils. 



 
 

EURASIA J Math Sci and Tech Ed 

 

3 / 17 
 

1992). Students who possess procedural knowledge only make a lot of misconceptions (Siyepu, 2013). 
Misconceptions are wrong ideas which are constanly used (Parent, 2015). Ellis and Grinstead (2008) argued that 
learners bring to the classroom different understanding about coefficients, 𝑎𝑎, b and c in the quadratic function, most 
of them believed the coefficient represented the slope of a quadratic function. Some were not sure whether the 
coefficients have an effect on the vertex or not. Borgen and Manu (2002) point out that a student who performs well 
in class may appear to have basic understanding of quadratic function concepts, but in reality, they may not have 
a conceptual understanding of the concept. This was proved through videotaping two students working together 
on a problem then comparing their written work and the oral interviews. Misconceptions may be caused by some 
difficulties which develop as a result of over-generalizing an essential correct conception or interferences from 
everyday knowledge (Leinhardt et al., 1990, cited in Parent, 2015). Other learners could not separate a function 
from a non-function. They also failed to use notation within the graph of a function itself. In an effort to understand 
learners’ understanding of concepts some researchers would show participants’ written work and interview 
transcripts reports illustrating how the data was collected (Bourdieu, Chamboredon & Passeron, 2000). However 
this study employed APOS theory to describe and analyse pre-service teachers’ knowledge construction of the 
quadratic function. The main aim of applying the APOS theory was to reveal the nature of preservice teachers’ 
mental constructions. To explore the nature of mental constructions, the following research questions were 
explored: 

• How do preservice teachers understand the quadratic function concept? 
• How do preservice teachers mental constructs of APOS link with preliminary genetic decomposition? 

THEORETICAL FRAMEWORK 
This research is anchored on APOS theory (Dubinsky & McDonald, 2001). The theory informs and guides data 

collection and analysis (Maharaji, 2013). The acronym APOS stands for action, processes, object and schema. 
Dubinsky (1991) initially introduced the major components of the theory as what goes through one’s mind when 
trying to learn a Mathematical concept. In this framework, learners mentally construct their understanding of 
mathematical concepts. This framework is carried out using the ACE teaching cycle, which is a pedagogical 
approach consisting of three components repeated in a cycle. The three components are: (A) activities, (C) classroom 
discussion, and (E) exercises. The initial stage of the cycle involves activities performed outside the class (Asiala et 
al., 1996). Maharaj (2013) claims that learning is facilitated if the individual possesses mental structures appropriate 
for a given mathematical concept. If the appropriate mental structures are absent, learning the concept becomes 
almost impossible to learn. It is therefore important to develop teaching methods that help students develop 
mathematical understanding. The APOS theory emphasises that conceptual formation works in stages and the 
construction of a complete mental structure operate through, the mental structures: actions, processes, objects, and 
schemas. Action is an external change of objects which occurs in stages showing how an operation is performed. It 
is characterised by specific instructions to be performed (Dubinsky & Mcdonald, 2001). At an action level of 
understanding, a learner, when working with the quadratic function concept like the vertex would need the 
formula −𝑏𝑏

2𝑎𝑎 
 in order to locate the vertex then moves on to the process stage. Process refers to a mental construction 

that is made by an individual when an action is repeated and reflected upon it. When an individual repeats an 
action, this action may be interiorised into a mental process (Dubinsky & Mcdonald, 2001). Maharaji (2013) refers 
to a process as a mental structure occurring wholly in the mind of the individual. A student with a process 
understanding can think of performing the same kind of action without the need of external stimuli. Dubinsky and 
Mcdonald (2001) further says that an individual might just think of performing a process without actually doing it. 
In continuation of the above example, at the process stage an individual can now find the vertex of any quadratic 
function, without the need of an explicit formula to follow. Object is a structure from a process where the individual 
becomes aware of the process as a whole and realises that change can act on it. If the learner can appreciate this and 
can actually build the changes, then it can be said that the learner has encapsulated the process into a cognitive 
object (Dubinsky & Mcdonald, 2001). In continuation from the above example, an individual who is able to 
compare, relate two vertices of a quadratic function, and create linkage between concepts has encapsulated the 
process into objects, so for that particular concept, the level of understanding was object level. Schema is an 
organised and linked logical framework of an individual’s collection of actions, processes, objects and other related 
schemas. The linkage is due to the fact that it provides an individual with a way of deciding, when presented with 
a mathematical problem (Dubinsky & Mcdonald, 2001). This framework occurs in an individual’s mind when faced 
with a problem situation that involves the concept. At this stage, one can apply the concept in real life situations. 
The main objective of an APOS analysis is to point to possible pedagogical strategies for helping students learn it. 
The theoretical analysis proposes the use of a genetic decomposition. 
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Genetic Decomposition 
The genetic decomposition is a set of mental constructions that a student might make in order to understand a 

Mathematical concept being studied (Dubinsky, 2001). This is also supported by (Jojo et al., 2013) who also outlines 
that a genetic decomposition is the structured set of mental constructs which describe how any given concept can 
develop in the mind of an individual. The preliminary genetic decomposition of the concept on quadratic equation 
is guided by the researchers’ teaching experiences and how they understand this concept. Figure 1 illustrates the 
proposed preliminary genetic decomposition of the concept of the quadratic equations according to APOS theory. 
If the differences in students’ performance cannot be explained by the genetic decomposition that would imply that 
the genetic decomposition needs revision (Ndlovu & Brijlall, 2015). 

 
Figure 1. Preliminary genetic decomposition for the concepts of quadratic function according to APOS theory, Adopted from 
Ndlovu and Brijlall (2015) 

METHODOLOGY 

Research Design 
In this study, we used the interpretive research paradigm. This study is qualitative in nature whereby a case 

study design was employed to explore students’ understanding of the quadratic function concepts. Hartley (2004) 
views a case study as a detailed investigation characterized by collection of data within a long period. A concept is 
usually analyzed within a specific context. This design was selected because it deals with real life context. Hartley 
also noted that this design has an advantage as it can be undertaken by one researcher who is intensively active, so 
it does not require a team of researchers to carry out the research. By its nature, qualitative research methodology 
allows one to use different research strategies to collect data. It also allows for the voice of the participants to be 
heard. This study used interviews, document analysis since the study is concerned with exploration of quadratic 
concepts. The qualitative paradigm allows the researcher to skillfully devise a tool to probe deeply within the minds 
or attitudes, feelings and reactions of the respondents. 

Participants 
This research comprised a group of twenty four preservice teachers taking their first year diploma in education 

at a teachers’ college in Zimbabwe. The students specialised in Mathematics as a double major subject, and all of 
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them were post A Level students. These student teachers’ conceptual levels of understanding were explored before 
they go for Teaching Practice Attachment (TPA). 

Tasks 
The data were generated through written responses of the twenty four students. Sets, Functions and Coordinate 

Geometry module is one of the first modules offered to First year Mathematics student teachers at the college. The 
researchers decided to investigate on quadratic function concept because it is one of the topics entailed in this 
module. On the other hand, other aspects like maximums, minimums, vertices and graph transformations are part 
of ‘O’ level syllabus which the student teachers would teach in schools. Concepts covered include parabolas, 
vertices, intercepts, word problems and vertex form. One of the researchers happened to have taught this module 
for seven years and discovered that during lectures, most students were not comfortable with explaining some of 
these concepts to their colleagues. It was also noted that averagely, the students did not perform well at the end of 
module test implying that they would not have understood the concepts. 

Data Collection 
Five tasks on quadratic functions were administered to the students and data was generated through written 

responses of the twenty four students. Ten students were sampled out to participate in the follow up interviews 
basing on their performance that is those who performed very well, the average performers and those who did 
badly. The researcher conducted follow up interviews within 20 to 30 minutes duration. An interview schedule 
was prepared. The purpose of the interview was explained prior to conducting the interview. The confidentiality 
of their names and the time needed was also highlighted to them. Fictitious names for the participants have been 
used to ascertain confidentiality and anonymity. During these interviews, the participants had the chance to clearly 
explain their written responses. The researcher had to probe them in order to solicit the required information. The 
interview questions were guided by the students’ responses on their answer scripts. Interview conversations were 
presented as interview excerpts. 

Data Analysis 
Written exercises were presented as extracts. Findings from the questionnaires were also presented in the form 

of tables. Descriptive statistics was used to analyze data from semi-structured interviews and document analysis. 
Data analysis was mainly based on the preliminary genetic decomposition. In order to test the feasibility of the 
genetic decomposition, students’ written responses to five assessment items were analyzed as part of this 
exploratory study. The tasks are presented below. 

RESULTS 

Understanding of the Definition of Quadratic Function 
Question 1 aimed to explore the preservice teachers understanding of the definition of the concept quadratic 

function. The question addresses the action and process level of the genetic decomposition. This question is 
illustrated below. 

Table 1. Question 1 
1a) Define the term quadratic function 
b) Explain how you would introduce this concept to a ZJC class.  

 

Questions 1a and 1b were concerned with definition of a quadratic function. They were treated as item 1 since 
question 1b was just a follow up of question 1a. A variety of definitions came out from the students’ written work 
on question 1a) which required them to define a quadratic function. Table 2 summarises what the twenty-four 
students wrote as their definitions of functions. 

Table 2. Frequencies of scores on item 1 
Definition of a quadratic function given by students Frequency 
An equation with two as the highest power of the unknown. 6 
An algebraic expression as two as the highest power of the unknown. 6 
A function as two as the highest power of the unknown. 11 
A relationship between range and domain such that the highest power of the domain is two. 1 
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Table 2 shows that all the 24 students could not give an explicity definition of the term but had an idea of the 
greatest power of the variable being 2. Analysing these results, it is evident that the students lacked a clear 
understanding of the meaning of the term function because they treated the quadratic function in parts, rather than 
as a complete unit. Most of them interchanged the word function with words like equation and expression. Some 
just used the same word to define itself, implying that they were not in a position to explain its meaning. These 
findings depicted a big gap between Zaslavsky (1997)’ proposed function definition and the student teachers’ 
responses. The idea of mapping one input to one output was not known to the student teachers. They just 
concentrated on the quadratic aspect only. One student thought that all relationships between range and domain 
can be called functions, yet a function is a special type of a relationship. However, they all remembered or agreed 
that the highest power of the unknown is two. The results show that on this concept on definition, the students are 
operating at action level since they had managed to identify the rule to use during their mental constructions 
(Dubinsky, 1991). In this case, the presence of an unknown in the expression with 2 as its highest power is the rule 
for defining a quadratic function. Question 1b was a follow up of question 1a. The researchers used this question 
to further probe the students’ understanding of the term quadratic function. Their conceptual understanding of the 
term was to be measured by the way they explained the concept to pupils as indicated by Shulman (1986) when he 
said that teachers need effective ways of representing the meaning of concepts they would teach. Some written 
work extracts and some interview excerpts for selected students are shown below. 

 
Figure 2. Far’s written response on understanding of the quadratic function 

Far defined a function as a relationship between domain and range. The quadratic part is the one he defined as 
being raised to the power two. The student does not realize that a function is made up of three components, which 
are domain, range and rule of correspondence. An incomplete description of the concept places Far in the action 
stage of APOS. His response to question 1b confirms that he is in the action stage of APOS since the explanation is 
vague. An interview was carried in order to get some clarification on what he wrote. 

Far’s Interview Responses (Excerpt 1) 

Interviewer: What do you mean when you say it is the relationship between range and domain? 
Far: The terms come from algebraic expression where unknown value is the domain, and then the range is what 
you get after substitution. 
Interviewer: How else can we define a quadratic function? 
Far: Yes, it’s more of an equation where the f(x) is represented by y axis. 
Interviewer: So does it mean that a function is an equation? 
Far: Yaa function and equation are equal. 
Interviewer: Besides recap of the previous lesson, how would you introduce this concept to pupils? 
Far: Teach them how to plot graph from a table of values 

From the interview excerpt, it can be deduced that Far fits in the action stage of the APOS stage because he 
could not make a clear distinction between a function and an equation, and could not explain it in terms of highest 
exponent of the function being equal to two. The extract below shows Olly’s written work. 
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Figure 3. Olly’s written response on understanding of quadratic functions 

Question 1a required the respondent to define a quadratic function and to explain how it would be introduced 
to ZJC class. Olly could not define a quadratic function clearly. His response to part 1b also indicated that his 
introduction would be a weak one. Olly’s response indicates that he has not reached the action level using the 
genetic decomposition on Figure 2. He is operating at the pre function level for question 1 (Dubinsky, 2011). 

Olly’s Interview (Excerpt 2) 
Interviewer: Is a function the same as an equation? 
Olly: l think they mean the same. 
Interviewer: 2 is the highest power of which values in the equation? 
Olly: x value. 
Interviewer: Do you think this is a motivating introduction to pupils? 
Olly: Yes, since it is a new concept, the teacher has to define it for them. 
Interviewer: How is the assumed knowledge of linear equations linked to the new concept? 
Olly: there is no linkage. 
Interviewer: Is the gradient of a quadratic function uniform as that of linear function? 
Olly: there is no difference. 

From this interview, it was noted that Olly had a vague idea about the quadratic function concept. He was not 
even prepared to go and deliver the concept confidently to ZJC pupils. The learner lacked knowledge of gradients 
and linear functions. This interview confirms that Olly is operating at the pre-function level, (Breidenbach, 
Dubinsky, Hawks, & Nicholas, 1992). 

Transformations on Vertices of Parabolas 
Question 2 aims to explore the preservice teachers understanding of the knowledge transformation on vertices 

of parabolas. The question addresses the action and process level of understanding according to APOS theory. The 
question is represented in Table 3 and the frequencies of responses are shown in Table 4. 
Table 3. Question 2 
Discuss the relation of a; b; c in the quadratic function: 𝑎𝑎𝑥𝑥2 + 𝑏𝑏 𝑥𝑥 + 𝑐𝑐 (standard form of a quadratic function). What 
do these coefficients do the graph vertex? 

 

 

Table 4. Frequencies of Responses on item 2 
Category 1 2 3 4 5 

Indicator Not answered 
/incorrect answers 

Only described 𝒂𝒂 
and 𝑐𝑐 only 

Explained how 𝑎𝑎 
affects the vertex 

Effect of 𝑎𝑎 and 𝑐𝑐 on 
vertex 

All correctly 
answered 

Number of responses 7 5 9 2 1 
 

The question required the learner to describe transformations on vertex of parabola after changing values of 
𝑎𝑎,𝑏𝑏, and 𝑐𝑐 on the quadratic function in the form 𝑎𝑎𝑥𝑥2  +  𝑏𝑏 𝑥𝑥 + 𝑐𝑐, where 𝑎𝑎 ≠ 0, a, b and c are constants. We noted 
that only one student was able to give a completely correct response and seven did not answer the question or have 
incorrect responses. Most candidates were familiar with the effects of varying 𝑎𝑎 and 𝑐𝑐 only. However, most students 
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focused on changes which occur when the value of 𝑎𝑎 takes positive and negative values. These findings were similar 
to Chazan (1992)’s who indicated that as the value of a gets bigger, the parabola becomes steeper and as the value 
of a gets smaller, the fatter the graph. From Chazan’s work, it is clear that use of diagrams could have facilitated 
the explanations of the transformations on these parabolas. However, the concept of increasing or decreasing the 𝑎𝑎 
value was not discussed by many students. For b most students had no idea on its effect on the vertex of the 
parabola. Students’ written work and interview excerpts were highlighted below. 

 
Figure 4. Olly’s written response on transformation on vertex of parabola 

The question required the candidates to be familiar with the standard form of a quadratic function 𝑎𝑎𝑥𝑥2 +  𝑏𝑏 𝑥𝑥 +
 𝑐𝑐, explaining the effects of varying the constants 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 to the graph vertex. Olly could not link the constants with 
the parabola. The student teacher failed to come up with actions, rules or procedures to form an action on solving 
the problem. The student teacher is operating at this level which is below action level but the preliminary genetic 
decomposition on Figure 2 failed to allocate a level for Olly. To confirm this, the researcher carried out an interview 
and the excerpts are shown below. 

Olly’s Interview (Excerpt 3) 
Interviewer: Could you explain the effects of varying the constants; 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 on the vertex of a parabola? 
Olly: What l remember is that “𝑎𝑎” should never be zero for one to be able to draw the graph. 
Interviewer: How about 𝑏𝑏 and 𝑐𝑐? 
Olly: 𝑏𝑏 is the gradient of the graph and 𝑐𝑐 is the y intercept. 
Interviewer: Is the gradient of a parabola uniform? 
Olly: It is the same as the gradient of a linear function. 

From the interview, it is clear that Olly is operating at pre- action level because there was no understanding of 
the question requirements. He just presented what he remembered which was not even correct. A misconception 
was also exhibited when he stated that b is the gradient of the quadratic function. These findings were similar to 
what Ellis and Grinstead (2008) found from researches carried out, where many students related the coefficients 𝑎𝑎, 
b, c to the slope of the quadratic graph, which is incorrect. On the effect of varying b, during his study, Ibeawuchi 
(2010) proposed the idea of drawing a quadratic graph with 𝑎𝑎 and 𝑐𝑐 remaining constant while 𝑏𝑏 changes. It was 
however noted that no one of the respondents tried the problem in a similar way. 

 
Figure 5. Student y’s written response on the work on parabola 
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Instead of explaining the effects of varying the constants 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 on the vertex, the student talked of roots instead. 
During the follow up interview, the student indicated that this was all he remembered on the constants 𝑎𝑎, 𝑏𝑏, 𝑐𝑐. The 
student is operating at the action level on this item where he memorized some formulae and tried to use them, but 
in the wrong place. The question was not conceptualized. 

Students Understanding of Graphical Representation 
Question 3 aimed at exploring the preservice teachers understanding of the curve sketching and its applications. 

The question addresses the object understanding of the quadratic function according to the genetic decomposition. 
Question 3 is represented in Table 5 and the frequencies of scores are shown in Table 6. 

Table 5. Question 3 
3) Given the following function∶  𝑓𝑓(𝑥𝑥)  = 𝑥𝑥2  + 4𝑥𝑥 +  4,  
 a) draw the graph of the function.  
 b) find the vertex is (---, ---) and is it minimum or maximum?  
 c) write the quadratic function in vertex form.  
 d) how would you explain the vertex concept in relation to axis of symmetry to a ZJC class?  

 

 

Table 6. Frequencies of scores for item 3 
Category 1 2 3 4 

Indicator Sketch the graph Present function in 
vertex form 

Explain vertex in terms of 
symmetry concavity 

Number of responses 24 6 6 12 
 

Question 3a required the learner to draw the parabola and say if it is concave up or concave down. Most 
students got confused by the terms resulting in half of the students getting the answers correct and the other half 
getting wrong answers. From the follow up interviews it was noted that the students were familiar with the terms: 
concave and convex not concave up or down. The half which got it wrong did not construct the action conception 
of the concept. They are operating at pre-function level. The other half has reached the action level of APOS. 

Sketching the Parabola 
All the respondents managed to draw the graph of the parabola; however, two students created tables of values 

in order to draw the graph. Their conception of graphing is rooted on table of values. Almost all the student teachers 
exhibited the process level except for the two who could do nothing without generated values. 

Vertex Form of a Quadratic Function 
From the twenty-four participants, only six had an idea of the meaning of vertex form. Majority of the 

respondents confused it with the factorized form. Others had no idea of finding the vertex form. Some used the 
method of completing the square to express the function in vertex form, while others got the answer correct but 
did not show the working. When dealing with the axis of symmetry, the participants viewed it in two ways: 

• As a line that bisects the vertex or the whole graph as a whole,  

• As a number derived from the formula −  𝑏𝑏
2𝑎𝑎

.  

As for the vertex, the participants considered it to be the highest or the lowest coordinate pair (x, y), depending 
on which direction the parabola was orientated. Below are more students’ test extracts and the interview excerpts: 

 
Figure 6. Ten’s written response on the understanding of the vertex concept 
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Ten did not draw the graph so it became difficult for him to tell that the vertex is a minimum. Most students do 
not enjoy graph work, which a weakness for most Mathematics student teachers. This weakness was also 
highlighted by lecturers in the questionnaires they answered. This is also supported by Ellis and Grinstead (2008) 
who said that students have problems in linking algebraic statements with graphical representations. He got a 
wrong answer on that second part because his first part was incorrect. Ten did not even state the coordinates of the 
vertex. The stages for completing the square method were incorrectly done. He failed to attempt the last part of the 
item. According to (Dubinsky and Harel, 1992), Ten is operating at Pre-function level. This level is not contained in 
the preliminary genetic decomposition, hence the need to come up with a modified genetic decomposition as 
substantiated by Ndlovu and Brijlall (2015). Ndlovu and Brijlall propounded that if differences in student 
performance cannot be explained by the genetic decomposition, then that would be implying that the genetic 
decomposition needs revision. An interview was done to get some explanations on Ten’s written work. 

Ten’s Interview (Excerpt 4) 
Interviewer: Why didn’t you draw the graph of the function? 
Ten: l did not think it was necessary. 
Interviewer: what do you understand by the term vertex? 
Ten: It is the turning point of a graph. 
Interviewer: How did you come up with the vertex form? 
Ten: I don’t remember, I just tried to play around with the figures. 
Interviewer: Why did you leave part d? 
Ten: l do not find the connection between the vertex and the axis of symmetry of a graph. 

The interview excerpt indicates that there are no rules or algorithms used when he dealt with the question. The 
preliminary genetic decomposition in Figure 2 could not explain Ten’s level. Ten could be operating at a level below 
the action level which Dubinsky & Harel (1992) named pre- function level as stated in their findings. According to 
Ball & Bass (2000), Ten may have difficulties in teaching the concept which is difficult for him to understand. This 
situation then calls for revision of the preliminary genetic decomposition in order to come up with a modified one. 
This is in agreement with what Ndhlovu and Brijlall (2015) propounded in their research on matrix algebra. 

Students’ Understanding of Quadratic Word Equations 
Question 4 is represented in Table 7. The question addresses the object understanding of the concept of 

quadratic equations. The frequencies of scores are represented in Table 8. 

Table 7. Question 4 
The height h, in metres of an object above the ground is given by ℎ = 16𝑡𝑡2 − 64𝑡𝑡 + 19, where t is time in seconds and it is given 
that t ≥ 0.5. Find the time it takes the object to strike the ground and find the minimum/maximum height of the object.  

 

 

Table 8. Frequencies of scores on item 4 
Category 1 2 3 4 5 6 7 

Indicator 
No 

attempt 
made. 

Attempted and 
got a wrong 

answer. 

Used 
quadratic 
formula 
wrongly. 

Used the 
quadratic 

formula and 
got only the 

first part 
correct. 

Substituted a 
wrong t to 

find the 
minimum 

height of the 
object. 

Answered 
the whole 
question 
correctly. 

Answered the 
whole question 

but was not sure 
of their answers 
to the second 

part. 
Number of responses 1 1 1 10 8 1 2 

 

The question required the respondents to calculate the time taken by the object to strike the ground and the 
minimum height of the object. One student did not even attempt to answer the question. A follow up interview on 
this student revealed that he had no idea of how to go about it. Another student used an incorrect quadratic formula 
in the process of trying to answer the first part of the item. The student used 2ac instead of 2a as the denominator 
of the quadratic formula. According to APOS, these three students did not even fit in the action level but below the 
action level. The students are said to be operating at pre-function level as propounded by Dubinsky and Harel 
(1992). Ten students were operating at action level since they were able to use the quadratic formula correctly to 
find the time taken by the object to strike the object, however, they managed to answer the first part only. On the 
second part, eight students failed to find the x value of the turning point of the graph but simply substituted the 
value they got in part (a) which was not correct. Only one respondent got the whole question right. He clearly 
understood what was going on even without constructing the graph. The student teacher performed a new 
Mathematical operation of the quadratic concepts. According to APOS theory, this student is operating at the 
process level. A student operating at this stage can represent the solution using different forms. They can also 
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explain and justify use of a chosen method used. Reviewed literature indicates that this student has greater chances 
of adopting methodologies which foster conceptual understanding of concepts as propounded by Ball and Bass 
(2000). However, two students seemed to be operating at the process level. They correctly used the formula −𝑏𝑏

2𝑎𝑎
 to 

find the x value of the vertex point but had a weakness of failing to complete their calculation of the y value because 
they were no longer comfortable with a negative y value they got. 

 
Figure 7. Tam’s written response on understanding of quadratic word equations 

Tam’s work proves that he can actually work with problems in different forms, and has encapsulated the 
processes into a cognitive object (Dubinsky & Mcdonald, 2001). From these findings, the preliminary genetic 
decomposition fits well with the exhibited mental constructions. 

 
Figure 8. Tam’s written response on understanding of quadratic word equations 
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Tam exhibited conceptual understanding of the quadratic function concept. No weaknesses shown in his work. 
This implies that if he is to teach this concept, he would use methodologies which promote conceptual 
understanding since there is a linkage between one’s content knowledge and pedagogical knowledge as 
substantiated by (Ball & Bass, 2000; Hill & Ball, 2004). The follow up interview outcome also supports the analysis 
above. 

 
Figure 9. Rub’s written response on understanding of quadratic word equations 

The follow up interview results with Rub revealed that he clearly understood in his mind the requirements of 
the question but he was not sure whether he was still in the right tract since he was about to get a negative answer. 
This showed that he had interiorized the actions into processes, so he was operating at process level where the 
actions actually occur in the mind (Dubinsky & Mcdonald, 2001). The only weakness which Rub showed was lack 
of confidence in what she was doing. This may even affect her selection of teaching methodology as propounded 
by (Borko et al., 1992; Grossman, Wilson, & Shulman, 1989). The preliminary genetic decomposition managed to 
link well with these findings. 
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Figure 10. Bri’s written response on understanding of quadratic word equations 

There is clear evidence that Bri is operating at the action level, where the quadratic formula was correctly used 
to get the values of t. The second part of the question was difficult for him that he ended up putting down the 
answer without showing working. However, interview confirmed that this answer (-157, 16) was obtained by 
substituting 3, 67 (obtained in part a) into the original quadratic function, which is a misconception. This is similar 
to what Leinhardt et al. (1990) found out. Misconceptions are identified as incorrect features of student’s knowledge 
that are repeatable but not simply an error. 

DISCUSSION AND CONCLUSION 
This paper has provided answers to the research questions. Results revealed that students operate at different 

levels of APOS on certain concepts. Generally, most student teachers were at the action level. Very few interiorised 
the action level to the processes stage. Two student teachers managed to go through encapsulations of processes to 
form object. No one reached the schema stage of APOS on the quadratic function concept. It was observed that 
these preservice teachers had a lot of misconceptions and errors. Some incorrectly took it as the gradient of the 
quadratic function, which is a misconception from the linear functions. This is in agreement with what Zaslavsky 
(1997) and Ellis and Grinstead (2008) found out in their studies that in most cases students tend to treat liner and 
quadratic functions in the same manner. In this study, most students thought that the value of c in the quadratic 
function y= a𝑥𝑥2 + b x +c and linear function y = a x +c is gradient. This is actually a misconception which is a sign 
of inadequate mental constructions leading to lack of conceptual understanding of the gradient concept.  

Another weakness was on parabolic transformations (question 2). Students’ weakness was that they did not 
really understand the values of the coefficients on the quadratic formula. Moreover, they did not even think of 
drawing the graphs while varying the values of one constant at a time in order to study the pattern. On the quadratic 
word problem, a lot of students failed to link and transform the number story to the quadratic functions. This 
exhibited an APOS level which is far below object level. The moment they saw the quadratic equation, they only 
thought of solving it without clear understanding of the question. However, most respondents managed to solve it 
correctly showing that they were able to carry the actions correctly implying that they fall in the action level of 
APOS. 

Implication of the Study 
The fact that the study revealed that preservice teachers operate at different levels of understanding on concepts, 

it therefore calls for the need to cater for these human differences by allocating more time to more challenging 
concepts which are taught in schools. It is also crucial for preservice teachers to acknowledge that as pupils come 
into classrooms, they have different levels of grasping concepts. Consequently, it is recommended that first year 
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students be given time for thorough exposure on quadratic function concept which they would teach at ‘O’ Level. 
This promotes a good understanding of the concept. Most of them have no conceptual understanding of parabolas, 
vertices, quadratic word problems and quadratic transformations. Some mental constructions may be pushed to a 
higher level as they interact more with some content. Action level maybe interiorized into process level and the 
process level may be encapsulated into an object level. They may result in the teachers having problems with 
selecting suitable methodologies which fosters conceptual understanding of concepts. Teachers are therefore 
recommended to design instructional methodologies that help students to improve their level of understanding of 
quadratic function concept. Since the research was based on APOS Theory which was fathered by Dubinsky (1984), 
it is imperative for educators to join research organizations so that they keep abreast with current information. 

The extent to which the preliminary genetic decomposition explained the pre-service teachers’ responses. 
It was noted from the discussion that some of the mental construction link with the preliminary genetic 

decomposition, but some of the students’ responses could not be explained or accommodated by the preliminary 
genetic decomposition. Some responses were not clearly stated, hence the need for follow up interviews in order 
to probe and understand their mental constructions based on the written responses. It was noted that the 
preliminary genetic decomposition needed a refinement in order to accommodate these gaps. This lead to a 
modified genetic decomposition presented below. For example for the conceptualization of parabolas, the model 
did not include the schema of the method to use when finding vertex. Thus it was seen that the method of 
completing the square was seen as action. The ability to construct a graph without showing the step by step 
procedures was seen at the process stage and the individual must be able to explain how to draw a parabola without 
any set of values, which is explaining how the maximum or minimum values are arrived at. Thirdly the ability to 
transform any vertex to form graphs in which actions and processes can be applied is at the object stage. 

 
Figure 11. A modified genetic decomposition of the concept; parabola 

Also for the conceptualization of word problems, to be able to use the correct quadratic formula was seen as 
action and this was not included in the preliminary genetic decomposition. However to be able to describe and 
make connection between the word problem involving quadratic equation and understanding the meaning was 
placed at the process stage. Thirdly to recognize and transform word problems to graphs is applied at the object 
stage. 
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Figure 12. A modified genetic decomposition of the concept; word problems 

 On the quadratic word problem, a lot of students failed to link and transform the number story to the quadratic 
functions. This exhibited an APOS level which is far below object level. The moment they saw the quadratic 
equation, they only thought of solving it without clear understanding of the question. However, most respondents 
managed to solve it correctly showing that they were able to carry the actions correctly implying that they fall in 
the action level of APOS. 

Implications for the Study 
The fact that the study revealed that pre-service teachers operate at different levels of understanding on 

concepts, it therefore calls for the need to cater for these human differences by allocating more time to more 
challenging concepts which are taught in schools. It is also crucial for pre-service teachers to acknowledge that as 
pupils come into classrooms, they have different levels of grasping concepts. Consequently, it is recommended that 
first year students be given time for thorough exposure on quadratic function concept which they would teach at 
‘O’ Level. This promotes a good understanding of the concept. Most of them have no conceptual understanding of 
parabolas, vertices, quadratic word problems and quadratic transformations. 

Some mental constructions may be pushed to a higher level as they interact more with some content. This 
therefore means that since these teachers are operating at different conceptual levels of understanding and most 
them some did not understand these concepts clearly, thus to some extend they pass on this lack of knowledge to 
the pupils leading to some schools performing badly at the end of the year. 

Suggestions for Future Studies 
It was found from the study that learners make a lot of misconceptions as they learn concepts. It is therefore 

imperative for educators to identify these misconceptions and find ways of dealing with them. Current technologies 
like graphical calculators, computer software can be effectively used in classrooms to reduce misconceptions held 
by students. Educators share the above important ideas at organizations like Southern African Association Research 
of Mathematics, Science, Technology and Engineering (SAARMSTE), which may include misconceptions held by 
students on specific concepts and how they can be eradicated. 
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