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ABSTRACT

Because teachers cannot directly access the processes by which students construct
their mathematical knowledge, Teacher Noticing, an activity that involves observing
students’ work, interpreting students’ mathematical thinking about a task based on
their remarks or actions, and responding to their thinking, is important to grasp
students’ mathematical understanding. A possible way for teachers to develop noticing
expertise is to engage in a situation focused on student thinking such as clinical
interviews. However, noticing students’ thinking productively through clinical
interviews remains a challenge, especially for pre-service teachers, not only because it
requires a broad range of knowledge but also because of the absence of a framework
to inform and evaluate the process. This paper addresses the development of such a
framework for evaluating the quality of pre-service teachers’ noticing expertise in a
context where students’ thinking is emphasized by removing normal classroom
interruptions. It then demonstrates how the framework can be used for this purpose
through three empirical examples of pre-service teachers who engaged in an
intervention that involved conducting clinical interviews and analyzing students’
mathematical thinking by watching video-recordings of their clinical interviews.

Keywords: noticing expertise, clinical interviews, building models, students’
mathematical thinking

INTRODUCTION

Research on teacher knowledge in mathematics education has developed extensively over the past two decades,
much of it suggesting the importance of preparing pre-service mathematics teachers who have a deep
understanding of content, pedagogical content and curricular knowledge (Ball, 1991; Carpenter, Fennema,
Peterson, & Carey, 1988; Hill, Rowan, & Ball, 2005; Shulman, 1986), as each plays a significant role in developing
effective strategies for teaching mathematics. In the domain of pedagogical content knowledge, understanding
learners’ thinking is considered important because instruction must connect with their present thinking in order to
lead them further (Carpenter et. al, 1988; Lee, 2013; Philipp et. al, 2007).

Accordingly, many researchers have addressed ways to improve teachers’ ability to understand students’
thinking (Bartell, Webel, Bowen, & Dyson, 2013; Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Jacobs, Lamb,
& Philipp, 2010; Norton & McCloskey, 2008; Philipp et al., 2007). One tool found to be valuable in focusing on
students” mathematical thinking is teacher noticing, an activity that involves observing students” work, interpreting
students” mathematical thinking about a task based on their remarks or actions, and responding to their thinking
(Lee, 2013; Norton & McCloskey, 2008; Steffe & Wiegel, 1996). Because teachers cannot directly access the processes
by which students construct their mathematical knowledge (Steffe & Thompson, 2000; von Glasersfeld, 1995), a
possible way for teachers to develop noticing expertise is to engage in clinical interviews (Amador, 2016; Fernandes,
2012; Lee, 2013; Norton & McCloskey, 2008).
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Contribution of this paper to the literature

e  This paper contributes to extending existing frameworks for mathematics teacher noticing by (1) proposing
a framework for evaluating the quality of teacher noticing expertise in a context in which students” thinking
is emphasized by removing normal classroom interruptions and (2) demonstrating how the framework can
be used for this purpose through three empirical examples of pre-service teachers who engaged in an
intervention that involved conducting clinical interviews and analyzing students” mathematical thinking by
watching video-recordings of the clinical interviews.

However, noticing students’ thinking productively through clinical interviews remains a challenge for teachers,
not only because it requires a broad range of knowledge (Cobb & Steffe, 1983; Norton & McCloskey, 2008; Steffe &
Thompson, 2000), perceptions (Lee & Cross Francis, 2017), and resources (Schoenfeld, 2011; Star & Strickland,
2008), but also because of the absence of a framework that provides specified criteria for evaluating noticing skill
in a situation focused on student thinking such as clinical interviews. The purpose of this paper is to develop a
framework for evaluating the quality of teacher noticing expertise in a context in which students’ thinking is
emphasized by removing normal classroom interruptions and then to demonstrate how the framework can be used
for this purpose through empirical data collected in a field experience where interventions of conducting clinical
interviews and analyzing students’ thinking after interviews are incorporated.

LITERATURE REVIEW

Teacher Knowledge

Shulman (1986) put forward the idea that teachers’ specialized knowledge of teaching differentiates them from
subject matter specialists. A subject matter specialist in mathematics pursues knowledge for the development of
the field, but a mathematics teacher places priority on improvement of students” understanding of mathematics.
Shulman distinguishes among three kinds of knowledge that teachers need: content knowledge, referring to subject
matter knowledge of mathematics; pedagogical content knowledge, which is topic-specific knowledge needed to teach
mathematics; and curricular knowledge, which is used to plan grade-level educational programs for specific subjects
and topics, including relevant instructional materials and affordances and constraints in their use.

Pedagogical content knowledge, which is concerned with teaching subject matter, includes four components:
knowledge of curricula for a particular subject, knowledge of assessments for a particular subject, knowledge of
instructional strategies for a particular subject; and knowledge of students” understandings of a particular subject.
In practice, teachers use pedagogical content knowledge to comprehend networks of interrelated concepts, to
represent a subject so as to make it comprehensible to students, to choose appropriate tasks for them, to understand
what makes the learning process easy or difficult, and to understand students’ reasoning related to specific content
knowledge (Carpenter et al., 1988; Grossman, 1990; Shulman, 1986). Expertise in noticing students’ thinking falls
within the domain of pedagogical content knowledge.

Teacher Noticing

Noticing here is regarded as the act of observing or recognizing something, and mathematics teacher noticing
is a particular type of noticing that is focused mainly on observing and interpreting students” mathematical
thinking. Prior research on teacher noticing (Jacobs et al., 2010; Miller, 2011; Sherin & van Es, 2009) defines noticing
in different ways depending on whether it focuses on (1) what teachers attend to, (2) their interpretation of what
they attend to, or (3) their responses to students’ reasoning based on what they have attended to and interpreted.

Sherin and van Es (2009) focused on two main areas: what teachers notice and how they notice. The dimension
of what includes both to whom and to which topics or issues teachers attend. The dimension of how captures their
analytic stances (e.g., descriptive, interpretive, and evaluative) and the depth of their analysis (e.g., whether they
rely on a few details, ground their interpretations in evidence, connect their analysis with learning/teaching
principles, or propose alternative pedagogical suggestions). Based on these two dimensions, van Es (2011)
developed a framework to assess teachers’ learning to noticing student thinking in the form of a trajectory of
development from Level 1 (Baseline), through Level 2 (Mixed) and Level 3 (Focused) to Level 4 (Extended).
Teachers at Level 1 tend to focus on superficial classroom events (e.g., students’ behavior, classroom environment,
etc.), create general impressions, provide descriptive comments, and evaluate comments with little or no evidence.
Teachers at Level 4, in contrast, are inclined to attend to events germane to learning such as students” mathematical
thinking, infer the meaning of those events, make connections, and propose alternative pedagogical responses.

Jacobs et al. (2010) and van Es (2011) both investigated teacher noticing by observing how they responded to
video clips of students” behaviors, the former focusing on individual students” mathematical problem solving and
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the latter on whole-classroom instruction. Jacobs and colleagues (2010) conceptualized noticing as a set of
interrelated skills termed professional noticing, which included attending to noteworthy aspects of students’
mathematical thinking, interpreting their mathematical thinking based on observations, and making instructional
decisions based on these interpretations. That is, Jacobs and colleagues viewed noticing expertise as a process of
interrelated teachers’ actions.

Mason (2002) also acknowledged noticing as a key to professional development and valued it as the first step
toward action. He described two forms of recording observations that could help teachers become more sensitive
what they see: accounts-of and accounts-for. Accounts-of indicates recording an event as it would be seen by other
observers without including emotion or judgment, which is similar to Jacobs et al. (2010)’s notion of attending to,
while account-for refers to providing “interpretation, explanation, value-judgment, justification, or criticism” (p. 40),
which is comparable to Jacobs et al. (2010)’s concept of interpreting. Similar to the third component of Jacobs et al.
(2010)’s framework of professional noticing, making instructional decisions, Leatham, Peterson, Stockero, and van
Zoest (2015) conceptualized a framework they titled Mathematically significant pedagogical Opportunities to build
on Student Thinking (MOST), which can be described as the intersection of three characteristics of important
components in teaching mathematics: mathematically significant content, pedagogical opportunity, and students’
mathematical thinking. They recommended first attending to students” mathematical thinking, then focusing on
whether the students’ thinking is mathematically significant so that it can advance students” development of critical
mathematical ideas, and finally considering, at the moment of teaching, pedagogical ways to build on students’
significant mathematical ideas to support their further progress. When compared to other frameworks related to
noticing, Leatham et al.’s framework is meaningful in that it explicitly addresses the significance of students’
mathematical ideas as an important aspect of noticing expertise. This clarification can provide a lens to help teachers
develop mathematically productive use of students” thinking.

Factors Impacted Teacher Noticing

Several researchers have found that effectively noticing students’” mathematical thinking requires both the
ability to focus on important events and knowledge of what is mathematically significant in students” messy
strategies (Jacobs, Lamb, Philipp, & Schapelle, 2011; Leatham et al., 2015). Schoenfeld (2010) also emphasized the
importance of teachers” knowledge, resources, and orientations in noticing students’ thinking and making decisions
to support the students’ learning. In a similar vein, the important role of teachers’ perceptions of the use of students’
mathematical thinking was highlighted in the finding that the deeper the awareness of the use of students’ thinking
teachers demonstrated in open-ended survey, the more effective the noticing skills they showed during a tasked-
based interview (Lee & Cross Francis, 2017). On the other hand, some researchers (Dreher & Kuntze, 2015; Jacobs
et al., 2010) found that in-service teachers tended to demonstrate more advanced noticing ability than pre-service
teachers, suggesting that teaching experience influences the development of noticing skills, although, as Dreher
and Kuntze (2015) pointed out, teaching experience is not always aligned with teachers” practices. They noted that
the relationship between teaching experience and noticing skill is complicated, and that noticing expertise seemed
to be closely related to teachers’ ability to draw on different components of professional knowledge. Another study
(Lee & Choi, 2017) supported this possibility by suggesting that introducing focal points to pre-service teachers
would contribute to the development of productive noticing skills despite their lack of teaching experience. All the
studies described here confirm that teachers need deep understanding of mathematical knowledge as well as skills
to decide instructional moves that support students’ learning.

Ways to Improve Teacher Noticing

Although researchers have conceptualized noticing in various ways, most have considered teacher noticing as
a key component of teaching expertise because it influences the quality of mathematics instruction (Jacobs, Lamb,
& Philipp, 2010; Schack, Wilhelm, & Fisher, 2017; Sherin, Jacobs, & Philipp, 2011). For this reason, those studies
have investigated various strategies for improving teachers’ noticing skills through professional development. For
example, teachers have been asked to describe what they notice in another teacher’s instruction video (Colestock &
Sherin, 2009; Kersting, 2008) or to retrospectively recall what they noticed while watching their own teaching videos
(Ainley & Luntley, 2007). Other researchers have tried to improve teachers’ noticing expertise by asking them to
watch and discuss excerpts of their own teaching or others” videos with their colleagues as a group (Lee & Choi,
2017; Sherin & van Es, 2009).

Moreover, several teacher educators have implemented interventions in their methods or content courses to
improve pre-service teachers (PSTs)" noticing expertise, also often using videos as a tool for PSTs to analyze
students” mathematical thinking. Star and Strickland (2007) found that such intervention helped improve PSTs’
ability to notice the salient features of secondary students’ thinking. In their study of 131 prospective teachers and
practicing teachers, Jacobs et al. (2010) found that prospective teachers struggled with all three components of
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noticing, that teaching experience enhanced practicing teachers’ abilities to attend to students’ strategies and
understandings, and that professional development provided support for all three skills. Schack, Fisher, Thomas,
Eisenhardt, Tassell, and Yoder (2013) developed a five-session module utilizing video excerpts of diagnostic
interviews of students” mathematical problem solving, which progressively interrelated the three components of
professional noticing, and implemented the module with 94 elementary PSTs in mathematics methods courses at
three institutions. The pre- and post- assessments showed that the module was effective in developing PSTs’
professional noticing skills. Roller (2016) also found that viewing videos of their own co-teaching an audience of
peers in a microteaching setting promoted secondary PSTs’ noticing skills.

In addition, Fernandez, Linares, and Valls (2012) examined how and when PSTs participate in on-line
discussions implemented to improve their noticing skills and found that participating was effective in improving
their ability to collaboratively interpret students” mathematical thinking. Fernandes (2012) investigated the impact
of an intervention in which mathematics PSTs conducted task-based interviews with English Language Learners
(ELLs). The author asked pairs of PSTs to conduct video-recorded task-based interviews using four measurement
tasks with two ELL students and found that the intervention promoted PSTs” awareness of ELLs" needs and
challenges and led them to employ strategies that were aligned with best practice for teaching ELLs.

In the studies discussed above, the emphasis has been on helping PSTs focus on mathematically important
events such as students’ thinking. Noticing is a critical skill for understanding students’ thinking, but in a classroom
situation where multiple events are occurring simultaneously, noticing students” thinking may be hard for teachers,
especially for novices and PSTs because of other distractions such as behavior and classroom management issues.
Thus, providing PSTs with an environment in which they can focus on students’ thinking, such as teaching
experiments, may be a key early component of teacher preparation. According to Amador (2016), teaching
experiments “provide a context for learning to notice because of the emphasis on students’ thinking and the
reduction of classroom interruptions” (p. 220).

Teaching Experiments and Model Building

Amador (2016) describes teaching experiments “as extending clinical interviews to encompass the scientific
process of building explanatory and predictive models of students” mathematical understanding” (p. 220). Steffe
and colleagues (Cobb & Steffe, 1983; Steffe & Thompson, 2000; Steffe & Wiegel, 1996) defined models in mathematics
education as “constellations of theoretical constructs that represent our [i.e., the teachers’ or researchers’]
understanding of children’s mathematical realities” (Cobb & Steffe, 1983, p. 83). This conception distinguishes
teachers’ practice-based models from second-order models, which are drawn from theoretical constructions by
researchers who focus on developing explanatory frameworks. Rather, teachers build models to describe particular
students’” thinking and use the information to make instructional decisions. Thus, in this paper a model is defined
as “a set of generalizable statements that represent one’s [teachers’] understanding of how a student is reasoning
about a particular mathematical concept, which might include statements of predictive value” (Lee, 2013, P. 19).
That is, as a way of improving noticing expertise, teachers are expected to build experiential working models as critical
precursors to second-order models rather than construct second-order models themselves.

Building models is important for choosing instructional tasks, asking appropriate questions, orchestrating
classroom discussions, adapting instruction to students’ needs, and diagnosing and remediating students’ learning
difficulties. In this respect, building models can be regarded as one of the most important factors in developing
pedagogical content knowledge (Confrey, 1990; Norton & McCloskey, 2008; Steffe & Wiegel, 1996). From a
constructivist perspective, building models is an essential process for understanding students’ thinking (Steffe &
Thompson, 2000; Steffe & Wiegel, 1996). According to constructivists, learning occurs when students modify and
reorganize their current thinking to construct new ways of knowing (von Glaserfeld, 1995). Thus, being aware of
students” current ways of thinking is important for effective mathematical teaching. However, because teachers
cannot have direct access to learners’ mathematical knowledge, they need to build models of students’ thinking to
understand their reasoning. Also building models to interpret students’ performances can provide a valuable
resource for effective lesson planning (Confrey, 1990). Additionally, the models formulated by interactions with
students provide a framework for teachers or researchers to engage in further interactive mathematical
communication with other students as well as with other teachers or researchers who are concerned about students’
mathematical thinking (Cobb & Steffe, 1983).

The models used in mathematics education are created by analyzing students” mathematical thinking, both
retrospectively and prospectively. A teacher or researcher begins modeling a student’s understanding by asking
what the student thinks, so that the student’s actions in a given situation make sense from his or her own viewpoint
(Hackenberg, 2005). To build a model, the teacher or researcher puts him or herself in the student’s position and
examines the student’s mathematical thinking from that perspective through careful observation and one-on-one
interaction (Confrey, 1990). As observations of and interactions with each student are accumulated, the teacher is
able to see patterns across students’ actions and verbalizations. The teacher then becomes reflectively cognizant of
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Figure 1. The process by which a model is created

patterns in the observation by identifying persistent constraints! on students” ways of thinking. Through this
process, the teacher eventually arrives at an explanatory framework, which is then used for new purposes. This
modeling process was adapted to the particularities of the participant group (i.e., PSTs) and the field experience
setting (i.e., science and mathematics field experience). The process by which PSTs in this study created models of
young children’s thinking is illustrated in Figure 1.

Model Building and Teacher Noticing

The extent to which noticing occurs is critical in building models of students” thinking. As stated by US Math
Recovery Council (2005), the value of building models is that the process involves:

ongoing assessment through careful observation [c.f. attending to students’ thinking from the notion
of noticing suggested by Jacobs et al.], hypothesizing about a student’s current knowledge and
strategies [c.f. interpreting students’ thinking], and selecting learning activities closely attuned to the
child’s current reasoning [c.f. making an instructional decision to support students” learning] (p. 6).

For this reason, some researchers have investigated building models through clinical interviews as a way to
improve teacher noticing because these activities offer a context in which to examine students’ thinking while
learning to notice (Amador, 2016; Norton & McCloskey, 2008; Steffe & Thompson, 2000; Weiland, Hudson, &
Amador, 2014). For example, Weiland et al. (2014) found that PSTs developed competent questioning skills while
they engaged in clinical interviews and analysing students’ thinking by building models of their scientific and
mathematical thinking. Amador (2016) used elements (e.g., analytic stances, the depth of analysis, etc.), which are
listed under the dimension of how from van Es’s (2011) framework in order to investigate how the professional
noticing expertise of four mathematics teacher educators developed through building models of their students’
mathematical thinking. She found that novice teacher educators provided evaluative comments but failed to deeply
analyze students’ thinking and make strong connections between students’ thinking and teaching/learning
principles. Her research also suggested the need for a framework to evaluate the quality of teachers’ noticing
expertise in a situation focused on student thinking.

In this paper, I extend the notion of noticing to include model building ability. To facilitate the development of
this ability, I propose a framework designed to evaluate noticing expertise demonstrated in a context in which
normal classroom interruptions are reduced and the emphasis is on students such as clinical interviews or teaching

1 A constraint is a problematic phenomenon that persists although a teacher repeatedly attempts various interventions in
working with a student.
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experiments. I call noticing in these special situations focused noticing expertise because the given situations are
without such distractions as classroom management, behavior, or logistics issues.

A PROPOSED FRAMEWORK TO EVALUATE TEACHERS” NOTICING SKILLS

Development of Two Main Criteria for Evaluating the Quality of Teachers’ Focused
Noticing Expertise

The framework provided here includes some sub-components from the how dimension of van Es’s (2011)
framework, but these are extended by considering the features of models created based on clinical interviews, so
that the proposed framework can be used to evaluate teachers” models of students’ thinking, which are closely
related to their noticing expertise.

According to Steffe and Thompson (2000), the quality of models is determined by the number of interactions
with students on which they are based and their use of such tools as theoretical constructs to account for students’
thinking. As they explain, a good model builder first sees “a pattern in students” models of explanation from
interaction with students” that “must be expanded to abstracting reflectively the operations that one applies in
constructing explanations” (p. 294). Thus, as explained by Cobb and Steffe, (1983), a good model includes both
generality in that it “should be general enough to account for other children’s mathematical progress” and specificity
to be “specific enough to account for a particular child’s progress in a particular instructional setting” (p. 91). That
is, a good model shows consistency both throughout the whole experience of one student vertically (specificity)
and across a group of students horizontally (generality). For this reason, it was determined that for a framework to
evaluate teachers’” models of students’ thinking, it should include two main criteria: descriptiveness, a version of
specificity, and generality. Descriptiveness refers to how well a teacher has described a student’s thinking based on
evidence from interactions with the student. Generality concerns whether the teacher has formulated generalizable
statements from this description.

Development of Sub-criteria of Descriptiveness

The first sub-criterion of descriptiveness is thoroughness. To get a clear sense of what is happening in an
interaction between a teacher and students, it is important for the teacher to consider a range of data such as
interview segments, observations of students” actions, and examples of their written work, and to select key parts
to support his/her model. If models are to be shared with other practitioners or researchers, it is especially
important to establish the context of the interaction (Boaler & Humphries, 2005; Lampert & Ball, 1998) by describing
interview goals, tasks posed to students, and other critical information that only the model builder can provide.

The second sub-criterion of descriptiveness is whether models are based on enough evidence. Norton,
McCloskey, and Hudson (2011) developed a rubric to assess PSTs” knowledge of students” mathematical thinking
as represented by models they derived from video-based predictions. As one of the components of the rubric,
“model” measures the quality of PSTs” models according to how well they have used evidence to support their
inferences of what or how the student in a video was thinking. Confrey (1990) and Steffe and Thompson (2000) also
emphasized the use of evidence from observations and one-on-one interactions in order to build powerful models.
Based on these studies, being evidence-based was determined as a sub-criterion of descriptiveness to evaluate the
extent to which teachers justified their models by providing explicit evidence of students” work.

These two sub-criteria for descriptiveness are also reflected in van Es’s (2011) framework by focusing on
whether teachers refer to specific events and interactions as evidence and whether they elaborate on events and
interactions, which are mentioned as one of the characteristics of teachers who demonstrate higher levels of noticing
skills. However, van Es’s framework does not consider the generality of teachers” interpretation of students’ thinking
as a criterion to assess teacher’s noticing expertise, which is important for providing a lens through which they can
predict and productively use students” mathematical reasoning for lesson planning.

Development of Sub-criteria of Generality

As mentioned above, a model in this study was defined as a set of generalizable statements to capture students’
thinking. Here, the phrase “generalizable statements” refers to statements of ideas that teachers could generalize
as a common feature of students’ thinking. More specifically, generalizing? in this context entails at least one of
three complex actions: identifying commonality across students” specific examples, extending teachers’ reasoning
beyond the description from which it is derived, and drawing broader statements from specific examples. Such

2] adapted this notion of generalization from Ellis’s (2011) work, even though her work is in the context of mathematical
activity.
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generalizable statements can help account for other learners’ mathematical thinking. Accordingly, the extent to
which teachers provided generalizable statements was one sub-criterion for generality.

Faithfulness was another sub-criterion for generality. A model is a plausible explanation of students” thinking,
and thus it can never be verified as definitively true or false. However, the viability of a model can be assessed by
confirming whether generalizable statements are consistent with evidence (Cobb & Steffe, 1983). The criterion of
faithfulness has two aspects. First, faithfulness assesses whether generalizable statements seem consistent with
teachers’ descriptions of students’ thinking in a selected data source. Second, faithfulness assesses whether
generalizable statements fit well with the evidence from all data sources. Cases of problematic faithfulness might
occur in three ways. The first way is that a model has inconsistencies or misinterpretations in relation to one selected
part of the data (e.g., interview video prediction, students” work, or observation). The second way is that the model
exhibits inconsistencies or misinterpretations when judged across all data sources. In other words, teachers” models
are assessed based on whether teachers have accurately identified and interpreted all evidence related to their
specific claims about what a student knew or did not know, or whether they have missed some critical information
to support their claims or misunderstood some evidence. The third way in which faithfulness is problematic is that
teachers have not selected appropriate evidence that captures the key elements of students” mathematical thinking,.
Teachers who do a better job at building models also do a better job of picking representative evidence by
considering all data sources (Steffe & Thompson, 2000). Thus, whether teachers have selected the best excerpts to
accurately demonstrate students” understanding and applied them appropriately was included as an indicator to
evaluate faithfulness of teachers” models.

Although not explicitly included in the framework for assessing PSTs” models proposed in this study, three
components of sophisticated models - predictability, research-based knowledge, and awareness of constraints in making a
generalizable statement - can also be considered in further development of the framework. Steffe and Thompson
(2000) stated that the quality of models is determined by how well they account for students’ thinking and predict
students’ thinking in a similar or more advanced situation. Also, Norton and McCloskey (2008) found that the use
of research-based frameworks in professional development supports teachers” ability to build more viable models
of students’ thinking. In their study, practicing teachers continually refined their initial models by referring to
research-based frameworks in drawing inferences from their students” current activity to predict their subsequent
activity.

Furthermore, considering the observation of Cobb and Steffe (1983) that making a good model involves
“dialectical interaction between the theoretical and empirical aspects” (p. 91), it is important for teachers to
recognize what kinds of additional information they need in order to test the viability of their models. In the model
building process, unexpected observations can lead to reformulation of theoretical constructs, and conversely, a
theoretical reformulation can lead to interpreting previous observations in a novel way (Cobb & Steffe, 1983). Thus,
being aware of constraints on making generalizable statements by addressing the need for additional questions and
tasks is worth being included in the criteria of a sophisticated model.

However, because the PSTs in this study had little or no experience with either building models of children’s
thinking or teaching children mathematics, it was unreasonable to expect them to build sophisticated models that
included predictability, research-based knowledge, and acknowledgement of constraints on making general
statements. As novices, they could reasonably be expected to make general statements that have predictive value,
and this predictability, which should enable others to use the model to predict how that student would respond to
a similar question or task. In this regard, even though PSTs were not expected to show this level of generality, if
some PSTs” models did, I also commented on it in my analysis.

Taken together, the criteria for evaluating the quality of teachers’ focused noticing expertise are provided in
Table 1.
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Table 1. Proposed Framework for Evaluating the Quality of Teachers' Focused Noticing Expertise

Main Aspects Sub-criteria Description References
Thoroughness This criterion is about whether a teacher has provided enough (Norton, et al.,
background information (context and tasks). 2011)
Descriptiveness This criterion is about whether a teacher has included explicit evidence

(Norton, et al.,

Evidence-based that supports the model from details of the student’s work in a segment 2011)

of data selected by a teacher.
This criterion is about (1) whether a teacher has provided statements that
indicate a generalizable feature of the student'’s thinking, rather than just a
description of a student’s solution to a specific problem and also (2)
whether the generalizable statements are applicable to describing other
students' thinking.
This criterion is about (1) whether generalizable statements are faithful to
Faithfulness a description of a student’s work from a selected part of the data and (2)
whether they fit with evidence from all data sources.
This criterion is about whether others can use

Generalizable
statements

(Cobb & Steffe,
1983; IMBP, 2010)

(Steffe &
Thompson, 2000)

Predictability the model to predict how that student would (Norton &
. . McCloskey, 2008)
respond to a similar question or task.
G lit is criterion i
from Research-based knowledge plicitly dep Hing 1983; Steffe &
. constructs, such as counting schemes,
sophisticated Thompson, 2000)
developed by other researchers.
level models

Awareness of constraints in This criterion is about whether a teacher
making a aeneralizable recognizes what kinds of additional (Cobb & Steffe,
949 information he/she needs in order to create a 1983)
statement .
more viable model.

EXAMPLES OF ELEMENTARY PRE-SERVICE TEACHERS” FOCUSED NOTICING
EXPERTISE DEMONSTRATED IN THEIR MODELS OF STUDENTS” THINKING

The three examples shared in this section were selected to show how the proposed framework can be used to
evaluate PSTs’ noticing expertise by analyzing their models of learners’ thinking and to examine differences across
their models. These examples were produced in a field experience project focused on understanding young
children’s mathematical thinking through clinical interviews and building models (IMB, 2010). Prior to teaching in
the elementary school classroom in which they were placed, PSTs were engaged in an iterative model building
intervention (cf. Figure 1) in which they were paired to interview a pair of children in the process of performing
mathematical tasks. These interviews were video-recorded for the PSTs to use as resources for formulating models
supported by evidence from video clips of the children’s problem-solving behaviors. To create models, PSTs first
chose one or two segments that best showed the reasoning of the students that they interviewed. Because the PSTs
were assigned to different grades and classrooms, the content varied across the video-recorded clinical interviews
depending on the topics being covered in the assigned classrooms. Therefore, although examples from the same
content would have been preferable for comparing the three levels, owing to the logistical limitations of the field
experience, I selected examples from three PSTs who interviewed children in lower grades (kindergarten through
second grade) about a topic relevant to counting. In the following discussion, the first example is of high-level
focused noticing expertise, the second of mid-level, and the last of low-level.

Example 1: High-level PSTs’ Focused Noticing Expertise Shown in a Model of a Student’s
Thinking

High-level focused noticing expertise demonstrates all four criteria, meaning it is thorough, evidence-based,
includes generalizable statements, and demonstrates faithfulness, in addition to which it incorporates at least one
component from sophisticated level models. That is, PSTs provide detailed background information and explicit
evidence that support their models of a student’s thinking. Moreover, they present statements indicating
generalizable features of the student’s thinking, which are faithful to their descriptions of students” work based on
focal video clips and also to evidence from the entire interview video. In particular, the generalizable statements in
their models include insights applicable to describing the majority of students’ thinking in that they are consistent
with the findings of prior research.

Table 2 represents Joy’s high-level focused noticing expertise as shown in her model of the mathematical
thinking of Grace, a kindergarten student. When asked in the clinical interview how many different ways she could
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Table 2. Joy's Model of a Student’s Mathematical Thinking

The goal of this interview was to learn more about students’ knowledge of comparing, combining, recognizing and
representing numbers one through ten. This was done by giving students Unifix cubes and asking them "How many different
ways can you make ten?” In the chosen clip Grace shows two different combinations of how to make ten.

In the video segment when Grace is asked, "how many different ways can you make ten?” she automatically does the five
and five. The interviewer asks "Are there any other ways to make ten?” After pausing, Grace makes five groups of two with her
unifix cubes. This shows that Grace is only familiar with making the combination of ten with the same numbers. This can be
achieved through doubling numbers such as five plus five or repeated addition or counting by 2's such as 2+2+2+2+2 to get to
10.

If presented with ten Unifix cubes, Grace would be able to make two different same number combinations to get ten. She
also can count by ones to get the total number of ten. Her same number combinations are by grouping five and five. Then her
second combination is five groups of two (2+2+2+2+2). However, Grace cannot come up with different number combinations
for ten such as 6+4, 2+8, 1+9 and 7+3.

make ten out of her Unifix cubes, Grace made two groups consisting of five cubes each. Also, when Joy asked how
many groups there were and how many cubes in each group, Grace was able to state that there were two groups
and five in each group. Then when asked to make another combination of ten, Grace made five groups of two using
cubes, and she also knew that there were five groups and two in each group. In addition, when Joy asked how
many cubes she had, she whispered “one, two, three, four, and five while pointing at each group of two and then
answered there were 10 cubes there. Also, when Joy asked her to count the cubes by twos, Grace said “two, four,
six, eight, ten.”

As evaluated using the proposed framework, Joy’s model fulfilled descriptiveness and generality, as well as
one criterion from sophisticated models. In terms of descriptiveness, it met the criterion of thoroughness quite well.
After articulating that the goal of the interview was to assess students’ knowledge of comparing, combining,
recognizing, and representing numbers one through ten, Joy described the interview task, which was to show two
different ways to make combinations of ten, and the context, the provision of Unifix cubes as problem solving aids.
Joy’s model provided sufficient background information to be understandable in its representation of Grace’s
knowledge of how to combine the same numbers to make ten and of how to recognize and represent ten as the sum
of some number of same-number pairs.

Her model also satisfied the criterion of being evidence-based in that she supported it with two relevant
examples of the student’s work. The first example from the video segment showed Grace’s immediate response of
“five and five” to the question, “how many different ways can you make ten?” The second example showed Grace
pausing and then making five groups of two with her Unifix cubes when asked, “Are there any other ways to make
ten?”

In terms of generality, Joy provided generalizable statements in her model of Grace’s thinking. For example,
Joy stated, “if presented with ten Unifix cubes, Grace would be able to make two different same-number
combinations to get ten. She also can count by ones to get the total number of ten. However, Grace cannot come
up with different number combinations for ten such as 6+4, 2+8, 1+9 and 7+3.” These statements could be
considered applicable not only to Grace’s but to other students’ thinking because they were consistent with the
results of prior research (Sarama & Clements, 2009). When asked to find a combination of the number 10, many
students would first answer 5+5 because humans have 10 fingers, five on each hand, so the combination of 5+5
would be intuitive to them. Also, numerical children usually have a good sense of doubling numbers (Ginsburg,
1989; Sarama & Clements, 2009).

Joy’s model was also faithful according to both aspects of faithfulness. That is, her generalizable sentences were
well related to her evidence from the focal interview video clips, which showed that Grace demonstrated two
different ways of combining numbers to make 10, first using the strategy of doubling a number (5+5) and then
using the strategy of counting by twos (2+2+2+2+2). These generalizable sentences supported Joy’s conclusion that
Grace was familiar with making combinations of the same numbers when asked to make 10.

In addition, Joy’s model was considered faithful to the evidence from her entire interview video. It showed that
Grace was able to keep track of how many times she had counted by two or by five in an activity, which was
confirmed by characteristics Grace exhibited throughout the interview video. For example, in another part of the
video, after she had made her two combinations for ten and shown that she understood how she had formed them,
Grace was asked how many cubes she had, and she answered there were 10 cubes by whispering one, two, three,
four, and five while pointing at each group of two, indicating she could do “double counting.” This observation
was confirmed when she was asked to count the cubes by twos, and she responded two, four, six, eight, ten. Thus,
Joy’s model showing that Grace had the concept of grouping and ability to count by twos fit with other evidence
from entire interview video.
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Table 3. Mary's Model of a Student’s Mathematical Thinking

The focus on the clip was to better understand what types of counters students are and how they are evolving as counters to
better prepare our lessons to include all types of counters. From the first transcribed segment, we were able to learn that Mila is
able to count to at least 30, but still must count physical objects or the movements of those objects to keep track of what she has
counted in order to get to the correct answer. When bringing in more blocks, she is still only able to count by 1's and starts from
the very beginning instead of counting on. The second segment shows that Mila understands how many ‘units’ a number
represents. Even if the 3 blocks aren’t shown, she is able to use manipulatives (her fingers) to represent what is hidden and then
add that to what manipulatives she can see (the blocks).

Mila is able to count the blocks that are physical objects that she can see and touch. However, Mila has to create manipulatives
to understand what the 3 blocks under the cup look like in order to add that to the 5 blocks on the outside. She holds up 5 on
one hand for the blocks on the outside and 3 on the other hand for the blocks under the cup she can't see. Now that she is able
to see the total number of fingers (which represent the total number of blocks) she is able to count how many fingers she is
holding up.

The model and evidence prove that Mila is only comfortable counting when she can use manipulatives to represent numbers
and that she must start with 1 and count until everything is counted. Mila is still not able to count on because when she counted
her fingers she didn't recognize that 1 full hand equals 5 and then she would just count 6, 7, 8. Mila knows very well the order of
numbers and how to count, but when she is counting the quantity of one group plus the quantity of another group she basically
has to combine them into one large pile and just count the whole thing (counting all). Mila didn't yet recognize how to ‘count
on’ from numbers when adding numbers together. She views adding as putting two parts together and counting the total, rather
than adding on a certain number to a previously known number.

Finally, Joy’s model of Grace’s thinking demonstrated one of the components of sophisticated models,
predictability. In her model, Joy used an if-then sentence to predict how her student would respond to a similar
task: “if presented with ten Unifix cubes, Grace would be able to make two different same number combinations
to get ten. She also can count by ones to get the total number of ten.”

Example 2: Mid-level of PSTs” Focused Noticing Expertise Shown in a Model of a
Student’s Thinking

Mid-level focused noticing expertise mainly demonstrates the three criteria of thoroughness, being evidence-
based, and having generalizable statements. Some PSTs in this study included a component from sophisticated
models. However, their noticing expertise had some limitations in faithfulness in that their models were faithful to
descriptions of students” work based on focal video clips but did not fit other evidence in the entire video. Also,
some PSTs based their models on video clips that did not capture key features of the students’” mathematical
thinking.

Table 3 represents Mary’s mid-level focused noticing expertise as shown in her model of Mila, a first grader.
When Mary asked Mila to add 10 cubes to the original collection, she started from the beginning to count one block
at a time while pulling it with her finger and repeated this action when asked to add 10 more cubes. In addition,
when asked to count 30 blocks, Mila counted the cubes one by one up to 20, but after 20, her number word did not
always correspond to only one cube, and she finished by answering 29. When asked to count again, she counted
correctly one by one to 20, but she touched two cubes when saying “twenty five,” and also she counted two
connected cubes as one cube, this time answering 28. Moreover, when asked to count three hidden cubes and five
visible cubes, Mila used five fingers on one hand to represent the visible cubes and three fingers on the other hand
for the hidden cubes and counted all eight fingers from the beginning.

Mary’s model of the mathematical thinking of Mila fulfilled the standards of descriptiveness and generality in
the proposed framework, and included a component of sophisticated models, being research-based. However, her
model showed some weakness in the criterion of faithfulness. More specifically, Mary’s model met the criterion of
being evidence-based because it drew on specific examples from the interview video. In her model, Mary described
that Mila was able to count objects that she could see and touch. She also noted that Mila needed to use her fingers
as manipulatives to represent and count the three hidden blocks and add them to the five visible blocks, all of which
she counted one by one to reach the total number of eight.

In terms of generality, Mary provided generalizable statements in her model. Mary stated that Mila was able to
count blocks or fingers only if they were visible. More specifically, Mila was able to add visible blocks and hidden
blocks if she first represented the latter with her fingers and counted them all one by one from the beginning,
evidence that she could not count on. Relying on physical objects and recounting from the beginning when objects
are added to an original collection are behaviors commonly seen in students who do not construct the meaning of
numerosity (Olive, 2001; Steffe et al., 1983). These students tend to depend on sensory-motor operations with
tangibles such as blocks and fingers in order to count and to start over when objects are added. In this regard,
Mary’s generalizable statements could be used to describe other students’ thinking.
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However, Mary’s model did not completely fulfill the criterion of faithfulness in that it conformed to her two
selected video segments but not to some parts of the entire clinical interview. In the first segment, when asked to
add 10 cubes to the original collection, Mila counted from the beginning one by one and repeated this action when
asked to add 10 more cubes. In the second segment, Mila counted fingers from the beginning to add three hidden
and five visible blocks to find a total number of cubes. Thus, Mary’s model, which indicated that Mila needed
physical objects to represent quantities and counted them by starting over from beginning when objects were added
rather than count from the given numbers, seemed to capture central aspects of the student’s thinking.

However, Mary’s claim that Mila was able to count to at least 30 was not faithful to some evidence from the
entire video. When asked to count 30 blocks, Mila touched each block while counting one by one, as the model
stated, but after 20 her number word did not always correspond to an object, which led her answer 29 instead of
30. In the second trial, Mila counted correctly one by one to 20, but ended up with answering 28 due to failing to
match a correct number word to each cube after 20. From this evidence, it could be said for certain only that Mila
was able to count forward to 20.

Third, Mary’s model of children’s thinking demonstrated a component from sophisticated models. By setting
the goal of understanding what type of counters students are, Mary drew on two important assessment constructs
in the theory of counting or early numeracy (Steffe et al., 1983): (1) whether a student is able to count objects placed
out of the perceptual field, and (2) whether a student is able to count on when objects are added to an initial
collection.

Example 3: Low-level of PSTs’ Focused Noticing Expertise Shown in a Model of a
Student’s Thinking

Low-level focused noticing expertise fulfills the criterion of being evidence-based but shows limitations in
thoroughness, generalizability, and faithfulness. Noticing at this level may lack of thoroughness because the
interview context is not adequately described. In addition, PSTs at this level often fail to provide generalizable
statements. Although they include examples of students” activities in their models, they focus only on reporting the
students” work in detail, often using quotes from the interview videos. Also, at the low-level, the criterion of
faithfulness often cannot be assessed because without the provision of generalizable statements, there is no basis
for determining faithfulness.

Table 4 represents John's low-level focused noticing expertise in his model of the mathematical thinking of
Keywaine, a second grader. John's clinical interview was focused on understanding how students use addition
strategies in story problems. In particular, John investigated whether students can use “doubles and near doubles”
strategies in addition, which refers to doubling given numbers when asked to add the same numbers or two almost
equal numbers. In the interview, Keywanie solved the first problem by using the standard computational
algorithm. When asked to solve 10+10, Keywaine mentally computed very quickly. Then when John asked how he
knew the anwers were 20, Keywaine answered “because one plus one is two and zero plus zero is nothing.” When
John asked whether there were other strategies to solve 10+10, Keywanie said, “double fact” after hearing
interviewer’s cue, “what is called adding the same number twice?” In the second problem, when asked to solve
10+11, Keywaine answered 21, again using the standard computational algorithm, “one plus one is two and zero
plus one is one.” When asked other strategies to solve 10+11, he initially did not answer anything but when asked
what “almost a double but not quite” would be called, after being reminded of using doubles for the first problem,
Keywaine answered “a near double.” Then he explained how the concept of “near double” worked for the problem
10+11 by doubling 10 and then adding 1 to obtain 21 as the sum.

John's model satisfied the criterion of being evidence-based because he provided two detailed examples of the
student’s work with the questions posed to the student. In the first segment, John described how Keywaine solved
the problem of 10+10 in his head and with John’s help how he came up with the term “double strategy,” which is
an alternative strategy to solve 10+10. In the second segment, John described how Keywaine solved 10+11 by using
a near double strategy although the idea was initiated by John’s prompt.

However, John’s model partially fulfilled the criterion of descriptiveness. That is, John’s model showed a lack
of thoroughness in that he provided insufficient background information. Although he articulated the goal of the
interview as discovering how students use doubling and near-doubling as math solving strategies, he did not
specify the interview context but simply indicated what was shown in the clip without giving such information as
the location and context of the selected clip within the entire interview video. Most importantly, John did not
provide any generalizable statements in his model of Keywaine’s mathematical thinking.
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Table 4. John's Model of a Student's Mathematical Thinking
The goal of the interview is to investigate doubling and near-doubling as math solving strategies. This selected clip

demonstrates different steps Keywaine used to discover solutions to the questions asked in the situation.

When presented with 10 plus 10, Keywaine solved the problem by just adding it in his head. When asked if there are other
strategies to use, Keywaine was confused at first, but the interviewer explained that “"Well, let’s think, if it is 10 and you are adding
the same number twice, so what strategy is that?” Which Keywaine then said “Oh yeah! A double fact!” Which means that Keywaine
understands double facts as two of the same numbers added together.

When presented with 10 + 11, Keywaine first set up the equation as a normal addition problem to solve. When reminded of
using doubles from before, Keywaine then explained that, “10+10= 20 and then if you add the remaining 1 you get 21, that's a
near double.” When solving a near double, Keywaine saves the additional one (the 1 in the 21) until the end of the problem, where
he gets 20, then adds 1, which gets 21.

Table 5. A Trajectory of Development of PSTs' Focused Noticing Expertise
Levels Features
High-level focused noticing expertise demonstrates all four criteria of thoroughness, being evidence-based,
High-level generalizable statements, and faithfulness. Also, it shows at least one component from a sophisticated level of
model building.
Mid-level focused noticing expertise shows the three criteria of thoroughness, being evidence-based, and
generalizable statements. However, PSTs in this level tend to show some limitations in the criterion of faithfulness.
That is, some models are not consistently faithful to evidence from the entire interview video or are not based on
the most appropriate clips from the entire interview videos to capture the students' key mathematical thinking.
Low-level focused noticing expertise shows only the criterion of being evidence-based. PSTs in this level show some
Low-level limitations in thoroughness. More importantly, they do not provide generalizable statements, which makes
evaluating faithfulness impossible.

Mid-level

DISCUSSIONS AND CONCLUDING REMARKS

In this study, I first developed a framework to evaluate the quality of PSTs’ focused noticing expertise
demonstrated in models of students” mathematical thinking by identifying four sub-criteria (i.e., thoroughness,
evidence-based, generalizable statements, and faithfulness) under two main aspects (i.e., descriptiveness and
generality). I then presented three levels of focused noticing expertise as a trajectory of development in a student-
thinking-focused-context along with three empirical examples in order to demonstrate the potential for this
framework to be applied in pre-service mathematics education (see Table 5). In the examples, arranging the
noticing expertise of the three PSTs from lowest to highest shows that the quality of PSTs’ focused noticing expertise
can be differentiated according to the criteria of descriptiveness and generality (see Table 1). This finding
demonstrates that the proposed framework worked for evaluating the quality of teachers’ focused noticing
expertise shown in models of students’ thinking. Three constructs used in developing the framework seem
particularly important for evaluating teachers” models of learners’ thinking: (1) attending to students” thinking by
describing their responses to given tasks; (2) reflecting on specific examples in order to derive generalizable
statements from them; and (3) applying prior knowledge gained from university coursework, professional
development programs, or conducting research in order to account for students’ thinking.

Understanding students’ thinking is important for effective teaching. Teachers” noticing skills, which include
attending to students’ thinking, interpreting how they solve mathematical problems, and using this information to
provide support for further learning, play an important role in teachers” understanding of students’ thinking. The
information noticing skills provide enables teachers to implement better student-centered teaching (Fennema,
Carpenter, Franke, Levi, Jacobs, & Empson, 1996; Philipp et al., 2007), in that they are able to plan lessons based on
students’ current thinking about specific mathematical topics, rather than on their own knowledge. Teaching
experiments and model building can provide a context in which teachers can take a self-reflective stance to consider
their own noticing skills. In particular, repeated practice with building models of students” mathematical thinking
will help sharpen teachers” awareness of their students” understanding and develop insights into how to use this
knowledge in their teaching (Cobb & Steffe, 1983; Confrey, 1990). Thus, continued explorations into how building
models can improve teachers’ focused noticing expertise and inform their instructional decisions and practices
promise to be a valuable contribution to teacher education.

To begin this process as early as possible, PSTs need to experience building models as a part of their noticing
training to focus on how students are thinking and how their thinking progresses. In this effort, the framework
proposed in this paper can provide PSTs with specific guidelines for improving their noticing expertise by building
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models of students’ thinking and reflecting on them. Also, this framework can be used as an analytic research tool
in investigations of teachers’ focused noticing expertise demonstrated in models of students’ thinking. However, it
must also be acknowledged that, in spite of its current potential for promoting teachers” understanding of students’
mathematical thinking, the proposed framework is still at an early stage and needs further development. Hopefully
this paper has provided the first step in this direction and will stimulate new ideas for improving teachers’ focused
noticing expertise through model building and lead to further research in this area.
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