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Preservice teachers (N=27) in two sections of a sequenced, methodological and process 
integrated mathematics/science course solved a levers problem with three similar learning 
processes and a problem-solving approach, and identified a problem-solving approach 
through one different learning process.  Similar learning processes used included: conjecture 
and test, reason, and experiment and collect data.  Although the problem was solved by 
similar processes: 26 out of the 27 preservice teachers categorized the problem as one of 
mathematics because of its association with formulas, equations, and numbers.  This learning 
process, which is not shared with science, signals a difference in the disciplines.  This 
difference may be associated with sequenced integration, a form of integration which allows 
problem-solving in depth and enriches an understanding of epistemology.  The implication 
for this study is that the current movement towards total, enhanced, and parallel integration 
may not allow students to strongly enrich aspects of mathematics learning.    

Keywords: problem-solving, integrated education, mathematics and science education, 
epistemic understanding, learning process 

INTRODUCTION  

Standards documents in the United States [US] such as the Next Generation 
Science Standards (NGSS Lead States, 2013) and the Common Core State Standards 
(NGACBA; National Governors Association Center for Best Practices, Council of Chief 
State School Officers, 2010) emphasize the importance of problem-solving 
approaches, learning processes, and epistemological understanding for the 
enrichment of student learning in mathematics and science.  Since mathematics and 
science have similar problem-solving approaches (Rutherford, & Ahlgren, 1990), 
learning processes (Bossé, Lee, Swinson, & Falconer, 2010), and epistemologies 
(Lederman & Niess, 1998), it has been proposed that integrated courses focused on 
these similarities can enrich learning (National Academy of Engineering and 
National Research Council; NAENRC, 2014).  Although integration has strong 
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philosophical support (see Roebuck & Warden, 1998; 
Rutherford & Ahlgren, 1990), it is not known how to 
best design integrated courses (NAENRC, 2014).  One 
reason for this problem is that integration takes on 
multiple forms (Hurley, 2001) and types (Miller, 
Metheny & Davison, 1997), and some forms of 
integration can impede the problem-solving 
processes (Berland & Busch, 2012).           

Unfortunately, there is little research on the 
association of the forms and types of integration with 
the learning of problem-solving, learning processes, 
and epistemologies.  This lack of research may be due 
to the recent emphasis of high stakes testing in the 
US which may occlude the integration of 
mathematics and science (Berlin & White, 2012) and 
the omissions of theories which guide integration in 
the literature (NAENRC, 2014).  The purpose of this 
study is to investigate how preservice teachers 
(PSTs) in a sequenced, methodological and process 
integrated course (a) solved a total integration levers 
simulator problem, (b) explained how they solved 
the problem, (c) categorized the problem as one of 
mathematics or science, and (d) explained the 
reasoning for the categorization.  A final purpose was 
to determine whether sequenced integration did or 
did not impede the problem-solving processes of 
disciplines.    

LITERATURE REVIEW AND THEORETICAL 
FRAMEWORK 

Problem-solving approaches are used by teachers 
to help students learn mathematics and science 
content, processes, and epistemological knowledge, 
and the NGSS (Achieve, Inc., 2013) and Common Core 
State Standards (NGACBA, 2010) emphasize the use 
of problem-solving approaches in the classroom.   
Research shows that teachers who learn how to 
problem-solve with problem-solving are more likely 
to use the approaches in their classrooms (Geier et 
al., 2008).  Experimental studies with control groups 
have shown that teachers who have been taught how to problem-solve with 
problem-solving have enriched student understanding to a greater degree than 
teachers who have not been taught with problem-solving (Carpenter, Feneman, 
Peterson, Chiang, & Loef, 1989; Saxe, Gearheart, & Nasir, 2001).  Therefore, it is 
believed that the problem-solving approaches should be used in teacher education 
programs so that teachers will understand the approaches and use them with their 
students.       

Problem-solving approaches in mathematics and science are based upon 
constructivism (Schoenfeld, 1992).  Constructivism, which is the learning theory and 
philosophy in which this study was investigated, postulates that students use prior 
knowledge and learning processes to solve problems and learn content (von 
Glasersfeld, 2005).  Learning processes are used to construct new knowledge on 

State of the literature 

 Multiple forms and types of integration exist 
which can incorporate problem-solving 
approaches, learning processes, and 
epistemologies.   

 Although integration is often seen as a 
panacea for the enrichment of learning, it is 
not known which forms and types of 
integration are most beneficial to the learning 
of problem-solving, learning processes, and 
epistemologies.  

 It seems that forms of integration that 
temporally separate the disciplines, like 
sequenced, may allow PSTs to experience 
both similarities and differences between 
mathematics and science, and allow 
epistemological goals to drive an 
uninterrupted problem-solving process by 
thoroughly investigating concepts.   

Contribution of this paper to the literature 

 Preservice teachers in two sections of a 
sequenced, methodological and process 
integrated mathematics/science course 
solved a levers problem with three similar 
learning processes and a problem-solving 
approach, and identified a problem-solving 
approach through one different learning 
process.   

 The identification of the one different learning 
process, which is not shared with science, 
signals a difference in the disciplines and is 
evidence of preservice teacher learning.  

 The identification of the difference between 
disciplines may be associated with a 
sequenced integration, a form of integration 
which allows problem-solving in depth and 
enriches an understanding of epistemology. 
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prior knowledge, strengthen prior knowledge, organize prior knowledge in a more 
sophisticated manner, or replace an aspect of the prior knowledge with new 
knowledge (Cakir, 2008).  The learning that occurs through problem-solving can be 
modeled with the processes that exist on either side of a spectrum and named 
assimilation and accommodation.  Assimilation takes place when a student 
encounters a phenomenon which agrees with the student’s prior knowledge.  This 
phenomenon strengthens the structure of prior knowledge.  However, connections 
are not made to other prior knowledge, new knowledge does not emerge, and little 
learning takes place.  On the other side of the spectrum is accommodation.  
Accommodation occurs when a new phenomenon does not coincide with prior 
knowledge.  This phenomenon creates a state of disequilibrium and the student 
either integrates the new knowledge into the prior knowledge or rejects the 
phenomenon (Wadsworth, 2003).  If the student integrates the new knowledge 
through accommodation, a degree of learning greater than assimilation takes place.    

Learning through accommodation is most likely to take place in an enriched 
learning environment which reflects the problems one would encounter in the real 
world (NRC, 2007).  These problems are often solved with the assistance of peers, 
tools, and an instructor who scaffolds (Hmelo-Silver, Duncan, & Chinn, 2007).  The 
problems are often presented to students with neither the strategies to solve the 
problem nor the solution to the problem.  After students determine a strategy to 
solve the problem, they must present and justify their strategies and solutions to the 
class, and reflect on others’ strategies and solutions (NCTM, 2014).  Problem-solving 
approaches in mathematics and science vary greatly from traditional mathematics 
and science instructional approaches in which students are given the solution to the 
problem with the problem, work independently, and solve slightly different forms of 
the problem.   

The problem-solving approach that teachers of science ask their students to 
employ is called inquiry, and the approach that teachers of mathematics ask their 
students to employ is also called problem-solving.  Since inquiry and problem-
solving are used in different ways in the classroom, they are conceptualized in 
different ways across the literature.  The most detailed and operational description 
of inquiry was created by Minner et al. (2010) and is represented by Table 1.  This 
table lists three aspects of inquiry instruction: (a) presence of science content; (b) 
student engagement; and (c) student responsibility for learning, student active 
thinking, and student motivation within components of instruction.  The five 
components of inquiry instruction include: question, design, data, conclusion, and 
communication.  The literature on mathematics education does not have an 
equivalent, well-defined, operationalized model; however, the Common Core State 
Standards (NGACBA, 2010) and Principles and Standards for School Mathematics 
(NCTM, 2000) emphasize a similar description of problem-solving.  For example, 
both documents list the following as important aspects of problem-solving: (a) 
presence of mathematical content; (b) student engagement; and (c) student 
responsibility for learning, student active thinking, and student motivation.  The 
components of problem-solving instruction may also include: question, design, data, 
conclusion, and communication.   

In the elementary science classroom, inquiry is often placed into a model called 
the 5E.  The name comes from the components of the model in which students 
participate, and includes engagement, exploration, explanation, elaboration, and 
evaluation (Bybee et al., 2006).  Mathematics does not lend itself as easily to a model 
like the 5E, so the approach is often taught with NCTM processes standards (see 
NCTM, 2000).  Bossé, Lee, Swinson, and Falconer (2010) compared the five NCTM 
processes standards with the 5E model and found that the disciplines shared 41 of 
51 descriptors.  These 41similar descriptors were further reduced to the 14 learning 
processes depicted in the middle column in Figure 1.  These are learning processes  
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Table 1. Inquiry science instruction conceptual framework 

Presence of 
Science 
Content 

 Science as Inquiry 
 Life Science 
 Physical Science 
 Earth and Space Science 

Type or Student 
Engagement 

 Students manipulate materials 
 Students watch scientific phenomena 
 Students watch a demonstration of scientific phenomena 
 Students watch a demonstration that is NOT of scientific phenomena 
 Students use secondary sources (e.g., reading material, the Internet, discussion, lecture, others' data) 
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Elements of the Inquiry Domain 
Instruction emphasizes Student 

Responsibility for Learning when it 
demonstrates the expectation that 

students will: 

Instruction emphasizes Student Active 
Thinking when it demonstrates the 

expectation that students will: 

Instruction emphasizes 
Student Motivation when: 

Q
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Decide which questions to investigate; 
seek clarification of the investigation 
question(s). 

Generate investigation question(s); use prior 
knowledge to inform the question(s); 
consider or predict possible outcomes of the 
question; Explore the reasons question(s) 
are being asked to determine if they are 
appropriate for scientific investigation; 
refine questions so that they can be 
investigated; discuss questions based on 
previous study or data collected. 

It demonstrates the 
expectation that students 
will: display/ express 
interest, involvement, 
curiosity, enthusiasm, 
perseverance, eagerness, 
focus, concentration, pride 
(all affective) 

D
e
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g
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Identify when and where they need 
help understanding the design; ensure 
that they (or the class/group/partner) 
grasps the design and how to 
implement it; decide what 
investigation design to use: ensure 
that the design addresses the research 
question. 

Use prior knowledge to inform the design; 
determine if the design is an appropriate 
match for the question including variables 
and procedures; debate the merits or 
different investigation designs and whether 
it is "doable" and will result in needed data; 
consider where and how issues of bias may 
need to be Instruction emphasizes Student 
Motivation when: addressed; generate 
investigation designs. 

D
a

ta
 

Decide the data organization strategy; 
decide what data collection strategy to 
use and/or how to adapt it; identify if 
they or others need help collecting or 
organizing data; seek out clarification 
and advice when it is needed. 

Alter and refine their approach to gathering. 
recording, or structuring the data based on 
information they acquire as they proceed. 
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Decide what strategies to use to 
summarize, interpret or explain the 
data; identify when they or others 
need help in summarizing, 
interpreting or explaining: and. seek 
out other relevant information to 
assist in drawing conclusions 

Ensure that their conclusions are supported 
by their data; apply prior knowledge to 
summarize, interpret, or explain the data; 
construct conclusions; consider conclusions’ 
reasonableness and credibility; identify 
applications or their findings to other 
situations and/or contexts; offer 
explanations for variations in the findings 
among the class and/or within their working 
groups; generate new questions that arise 
out of their explanations. 
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Decide how to structure their 
communication seek advice and 
suggestions from others about 
how/what to communicate; provide 
feedback to others about their 
communication. 

Engage in sound discussion and debate; 
demonstrate the logic they used to draw 
conclusions and interpretations; articulate 
the reasonableness and credibility of others' 
work; discuss appropriate communication 
mechanisms including language, visual aids, 
technology, etc., articulate the merits and 
limitations of their work. 

Note: Adapted from “Inquiry Science Instruction Conceptual Framework,” by D. D. Minner, A. J. Levy, and J. Century, 2010, Journal of 
Research in Science Teaching, 47, p. 479.  Copyright 2009 by Wiley Periodicals, Inc. 
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shared by both disciplines.  For example, Communication, a NCTM mathematics 
learning process, and Elaboration/Extension, a 5E model component, both share a 
descriptor which asks students to justify solutions (i.e., Justify & Defend Solutions, 
Reasoning, Synthesize Ideas). 

Multiple forms and types of integration exist which can incorporate problem-
solving approaches, learning processes, and epistemologies.  The multiple forms or 
degrees of integration include (a) sequenced, (b) parallel, (c) partial, (d) enhanced, 
and (e) total (Hurley, 2001).  Sequenced occurs when the disciplines are planned 
together, share some form of connection, but are taught separately.  Parallel occurs 
when the disciplines are taught and planned concurrently through parallel concepts.  
Partial occurs when the concepts are taught partially together and partially 
separate.  Enhanced is when one discipline dominates the others, and total 
integration completely blurs the lines between the disciplines to the point where a 
discipline is not apparent (Hurley, 2001).   The five types of integration include (a) 
discipline specific, (b) content specific, (c) process, (d) methodological, and (e) 
thematic (Miller, Metheny & Davison, 1997).  Discipline specific is centered on two 
or more branches of one discipline, content specific is creating a lesson or activity 
which uses an objective from mathematics and science, process is centered on the 

 

Figure 1. Connections among learning processes from mathematics and science 
education.   
Adapted from “The NCTM Process Standards and the Five Es of Science: Connecting Mathematics and Science” 
by Bossé, Lee, Swinson, and Falconer, 2010, School Science and Mathematics, 110(5) p. 269.  Copyright 2010 by 
School Science and Mathematics. 
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processes of mathematics and science, methodological is centered on the problem-
solving approaches of mathematics and science, and thematic is based on a themes 
which can be investigated within the disciplines.   

Although integration is often seen as a panacea for the enrichment of learning, it 
is not known which forms and types of integration are most beneficial to the 
learning of problem-solving, learning processes, and epistemologies.  The little 
literature which exists provides some insight.  Koirala and Bowman (2003) studied 
a team-taught, middle-level, integrated course which was centered on constructivist 
philosophy, processes, and learning cycles, but not specifically on inquiry and 
problem-solving.  All five types of integration were used and the form of integration 
appeared to be parallel.  PSTs’ understanding of integration was increased, but they 
became frustrated when integration became difficult.  The authors found it 
challenging to explain to PSTs that mathematics and science epistemologies do not 
have to match because the disciplines ask different questions.  This disequilibrium, 
in turn, helped enrich PSTs’ understanding in the epistemological similarities and 
differences of the disciplines.  Berland and Busch (2012) studied 15 middle and high 
school inservice teachers who participated in a six-week summer professional 
development endeavor in the teaching of engineering.  The form of integration can 
be best described as enhanced integration, as engineering was the dominate 
discipline and mathematics and science were secondary.  The type of integration 
seemed to be methodological since similar problem-solving and epistemic 
commitments of engineering, science, and mathematics were the focus.  The 
researchers studied how teachers, who had expertise in mathematics and science, 
applied their knowledge in engineering decision-making.  It was discovered that 
teachers used engineering problem-solving, learning processes, and epistemology to 
solve the problems.  Although mathematics and science concepts were applied in 
solving the engineering problems, the disciplines were rarely investigated in depth 
as problem-solving approaches were disrupted.   Author (2013) studied a 
sequenced, methodical and process integrated course centered on problem-solving 
approaches, learning processes, and epistemology.  PSTs participated in an inquiry 
lesson on biological classification and a problem-solving lesson on polyhedra.  PSTs 
successfully reconciled an epistemological issue by determining why it was possible 
to derive a mathematical formula for similarly-grouped polyhedra and not similarly-
grouped organisms.  This study showed that PSTs could identify and explain the 
reasoning for a slight difference between the disciplines.  This learning may be due 
to the sequenced form of integration which allowed the problem-solving approaches 
to progress without disruption from competing epistemic commitments. 

Based on the limited literature review it seems that forms of integration that 
temporally separate the disciplines, like sequenced, may allow PSTs to experience 
both similarities and differences between the disciplines, and allow epistemological 
goals to drive an uninterrupted problem-solving process by thoroughly investigate 
mathematics and science concepts.  Therefore, a course was created which 
separated the disciplines with sequenced integration, and connected the disciplines 
by methodological and process integration.  These types and form of integration 
meant that PST were taught science for the first half of the course and mathematics 
for the second half, and entire course was centered on the similarities and 
differences between problem-solving approaches, learning processes, and 
epistemologies of mathematics and science.   

During the course, PSTs had multiple experiences participating in and teaching 
problem-solving lessons.  At the end of the course, PSTs were asked to solve and 
categorize a total integration problem which could be solved with either inquiry or 
problem-solving.  It was important to investigate how PSTs solved the total 
integrated problem in order to determine which similar and different learning 
processes were used, and why they categorized the problem as mathematics or 
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science.  These questions are important because they illustrate (a) if and how PSTs 
see the differences between mathematics and science, (b) if these differences are 
based on different learning processes between the disciplines, and (c) what similar 
learning processes are used to solve the problem, and (d) if sequenced integration is 
associated with the PST responses.   

RESEARCH QUESTIONS 

1. How do PSTs solve a problem which could be solved by different problem-
solving approaches and similar learning processes?   

2. After solving the problem, do PSTs categorize the problem as one of 
mathematics or science?   

3. What reason do PSTs give for the categorization of the problem as one of 
mathematics or science? 

METHODOLOGY 

A constructivist research paradigm was used to answer the research questions 
because no theory based on empirical evidence had been posited which could 
capture the complexity of the PSTs’ responses through quantitative means.  
Constructivism, which uses a relativistic and pluralistic view of reality (Guba & 
Lincoln, 1994), was chosen because the study’s data and analysis is believed to be 
variable and transformable depending on one’s perspective.  The constructivist 
research paradigm used was grounded theory because it could answer the research 
questions by identifying and explaining the social processes.  The constant 
comparison method, a method that is often used in ground theory, was used to 
answer research questions one and three.  The constant comparison method was 
used because it can answer the research questions by comparing data with data, 
inducing themes, and creating categories.   

Participants 

Two sections of a sequenced, methodological and process integrated science and 
mathematics education course at a northeastern, United States masters-level college 
were analyzed.  PSTs (N=27) were students in a dual undergraduate 
elementary/special education major and were required to take an integrated course 
titled “Teaching Science and Mathematics in the Elementary School.”  The PSTs were 
sophomores and juniors between the ages of 19 and 21; 26 of the 27 PSTs were 
female; all had taken at least one college-level mathematics course; and five had 
taken at least one college-level science course.  PSTs were also enrolled in a 
complementary practicum course which met once a week in a local, low 
socioeconomic status, elementary school.   

Procedure 

The length of the course was 15 weeks with the first seven weeks of the course 
devoted to science education and the second seven weeks to mathematics education.  
Classes were held three days a week (Tuesday, Wednesday, and Friday) for 50 
minutes, and both sections were taught by the same instructor.  PSTs were asked to 
participate in 11 problem-solving lessons throughout the course.  This included six 
inquiry 5E lessons for science, four problem-solving lessons for mathematics, and 
the total integration levers simulator problem.  PSTs participated in inquiry 5E 
lessons on Tuesdays during Weeks one to four and six to seven, and problem-solving 
lessons for mathematics on Tuesdays during Weeks ten to 13.  The purposes of 
these lessons were for PSTs to: (a) experience and use problem-solving approaches 
and learning processes; (b) enrich their science and mathematics content 
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knowledge; (c) determine how to create similar, developmentally appropriate 
lessons for elementary students; and (d) understand the epistemologies of 
mathematics and science.   

The problems were created by the instructor who took into account the PSTs’ 
collective prior knowledge, learning processes, and experiences.  The instructor 
presented the problems to the PSTs without the solutions, and the PSTs engaged in a 
productive struggle to solve the problems.  The problems were challenging and 
meant to create some form of cognitive dissonance: This prompted the instructor to 
use scaffolding when warranted.  In order to solve the problems, the PSTs reasoned, 
worked in groups and with tools, and presented and justified their strategies and 
solutions to the class.  Table 1, the inquiry science instruction conceptual 
framework, can be used to describe the inquiry problems (Minner et al., 2010).  The 
framework can also be used to describe problem-solving since it is closely-related to 
inquiry.  All 11 lessons had science or mathematics content, some type of student 
engagement, and an emphasis on student motivation.  Eight of the 11 lessons 
included all components of instruction - with the expectation of questioning - for 
student responsibility for learning and student active thinking.  The other three 
lessons only emphasized conclusion and communication, as components of 
instruction, for student responsibility for learning and student active thinking.  The 
Appendix lists the components of instruction and summaries for all lessons.           

Since the course was also process integrated, it was designed for PSTs to 
experience all 51 learning processes descriptors, the 41 similarities, the 10 
differences, and the 14 reduced descriptors during the problem-solving lessons.  
However, these processes were not documented during the course and some may 
have been omitted or modified.  PSTs were also asked to create and teach problem-
solving lessons to students at a local elementary school on a weekly basis.  PSTs 
were placed in pairs or triads, given concepts to teach by the classroom teachers, 
and asked to create their lessons.  They created ten lessons in all: five inquiry 5E 
science lessons, three mathematics problem-solving lessons, and two mathematics 
direct instruction lessons. 

The 11 problem-solving lessons taught to PSTs during the 14 weeks follow.  Due 
to restraints related to length, each summary is centered on the problem which PSTs 
had to solve.  For example, Week 3 describes a lesson on owl pellets.  This inquiry 5E 
lesson had five parts, but since the exploration potion of the 5E is most closely 
associated with problem-solving, only this portion of the lesson was described.  The 
summary of the problem-solving lessons is as follows:  1. Dry Ice, Week 1: PSTs were 
given a piece of dry ice, a metal utensil, and a beaker of warm water.  They were 
asked to perform the following and to record observations and inferences for each 
task (a) place dry ice on table and observe it, (b) push down on the dry ice with a 
metal utensil, and (c) drop the dry ice into the container filled with warm water.  
After PSTs finished the three tasks, they were asked to answer the following 
question in pairs:  Please use your data and prior knowledge to explain why you 
believe the dry ice “behaved” as it did for each experiment.  All three of your 
observations can be explained with one big idea.  After PSTs solved the problem, 
they were asked to present and justify their reasoning and solution to the class.  2. 
Circuits, Week 2:  The instructor flicked the classroom lights on and off multiple 
times and asked the PSTs to explain the phenomenon and draw a schematic.  The 
PSTs were placed in pairs and given a bulb, two wires, and a battery, and asked to 
light the bulb.  The PSTs were then asked to (a) explain how they got the bulb to 
light and to draw a schematic illustrating the circuit, and (b) describe the 
relationship between the two schematics (adapted from Harvard-Smithsonian 
Center for Astrophysics, 1997).  After PSTs solved the problem, they were asked to 
present and justify their reasoning and solution to the class.  3. Owl Pellet, Week 3: 
PSTs were placed in pairs and were given a magnifying glass, probes, and a mystery 
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object (owl pellet wrapped in aluminum foil).  They were asked to investigate the 
object by dissecting it and to try to identify it.  After PSTs solved the problem, they 
were asked to present and justify their reasoning and solution to the class.  4. 
Preserved Organisms, Week 4: PSTs were presented with a three-set Venn diagram 
worksheet labeled annelids, cnidarians, and chordates.  Preserved organisms in 
plastic jars were placed on three separate tables in the classroom.  Four annelids 
were placed on one table, four cnidarians on another table, and five chordates on a 
third table.  PSTs were asked to find—using observation, inference, reasoning, and 
prior knowledge—the similarities within the organisms on each table and the 
differences between the groups of organisms at each table.  These characteristics 
were to be written in the appropriate six spaces on the three-set Venn diagram (see 
Author, 2013).  After PSTs solved the problem, they were asked to present and 
justify their reasoning and solution to the class.  5. Simulators, Week 5:  Due to a 
holiday, the week was abbreviated and no inquiry 5E lesson was presented.  In place 
of an inquiry lesson, PSTs were asked to investigate elementary level simulators at 
http://phet.colorado.edu/en/simulations/category/by-level/elementary-school.  
They then presented the simulators and how they could use the tool in their 
practicum class to others.  6. Electromagnets, Week 6:  PSTs were placed in pairs and 
given a steel nail, battery, wire, and a box of steel paper clips.  They were told the 
following: The iron in your nail is composed of billions of electrons that point in 
random directions.  The nail becomes magnetized when all or most of the electrons 
point in the same direction (become aligned).  You can make an electromagnet by 
aligning the randomized electrons in your nail with an electric current.  Electric 
currents that run through circuits have the ability to align the randomized electrons 
when they are close enough to the nail.  PSTs were then asked to create a circuit and, 
using the information above and their prior knowledge on circuits, pick up two 
paper clips with the nail.  After PSTs solved the problem, they were asked to present 
and justify their reasoning and solution to the class.  7. Forces and Motion, Week 7:  
PSTs were placed in pairs, given laptops, and asked to go to the following link:  
http://phet.colorado.edu/en/simulation/forces-and-motion.  PSTs were then told 
the following: Four forces act upon an object which is pushed.  If a crate is pushed, 
this force is called applied force.  But there are three other forces acting on the 
crate…gravity, friction, and the support force of the ground.  The crate moves when 
there is a sum force.  Create a mathematical formula which approximately describes 
the relationship between the applied force (AF) and the object mass (OM).  For 
example, if I told you that the object mass of the crate was 50kg, how would you find 
the value of the applied force if you could not use the simulator?  Your formula 
should contain at least the following symbols: OM, AF, =.  After PSTs solved the 
problem, they were asked to present and justify their reasoning and solution to the 
class.  8. Least Common Numerator, Week 8: PSTs were given a direct instruction 
lesson on a novel concept, the least common numerator (adapted from NCTM, 
1991).  9. Traditional Algorithm for Division, Week 9:  PSTs were given a direction 
instruction lesson on how to teach the traditional algorithm for division to children.  
This was modeled with base-ten materials.  10. Algebra and Tug-of-War, Week 10:  
PSTs were given the following problem and asked to solve it in pairs: Who will win 
the third round of this tug-of-war?  Round one: On one side are four acrobats, each 
of equal strength.  On the other side are five neighborhood grandmas, each of equal 
strength.  The result is dead even.  Round two: On one side is Jamal, a dog. Jamal is 
pitted against two of the grandmas and one acrobat.  It’s a draw.  Round three: Jamal 
and three of the grandmas are on one side, and the four acrobats are on the other 
(adapted from Burns, 1996).  PSTs could use manipulatives and tools (e.g., counters, 
polygon blocks, paper) to solve the problem.  After they solved the problem, they 
were asked to present and justify their strategy and solution to the class.  11. Rates 
and Paper-Shredding, Week 11:  PSTs were given the following problem and asked 

http://phet.colorado.edu/en/simulation/forces-and-motion


P. C. Cormas 

2566 © 2016 by the author/s, Eurasia J. Math. Sci. & Tech. Ed., 12(9), 2557-2574 

  
 

to solve it in triads: Ron’s Recycle Shop started when Ron bought a used paper-
shredding machine.  Business was good, so Ron bought a new paper-shredding 
machine.  The old machine could shred a truckload of paper in four hours.  The new 
machine could shred the same truckload of paper in only two hours.  How long will 
it take to shred a truckload of paper if Ron runs both machines at the same time 
(adapted from Van de Walle, Karp, & Bay-Williams, p. 16, 2013)?  PSTs could use 
manipulatives and tools (e.g., counters, colored tiles, scissors, paper) to solve the 
problem.  After they solved the problem, they were asked to present and justify their 
strategy and solution to the class.  12. Probability and Spinners, Week 12: PSTs were 
given the following problem and asked to solve it in triads: Three students are 
spinning to “get purple” with two spinners, either by spinning first red and then blue 
or first blue and then red.  They may choose to spin each spinner once or one of the 
spinners twice.  Mary chooses to spin twice on spinner A; John chooses to spin twice 
on spinner B; and Susan chooses to spin first on spinner A and then on spinner B.  
Who has the best chance of getting a red and a blue (adapted from Van de Walle et 
al., p. 18, 2013)?  PSTs could use manipulatives and tools (e.g., spinners, colored 
tiles, paper) to solve the problem.  After they solved the problem, they were asked to 
present and justify their strategy and solution to the class.  13. Euler Formula and 
Polyhedra, Week 13: PSTs were given individual laptops and asked to explore the 
following simulator: http://illuminations.nctm.org/ActivityDetail.aspx?ID=70 
(NCTM, 2012).  PSTs were then asked to: (a) work in pairs to find the relationship 
between the number of faces, vertices, and edges for the five polyhedra; and (b) 
create a formula by symbolically reducing/abstracting the relationship between 
faces, vertices, and edges.  The instructor also informed the PSTs that their formula 
should include, at the very least, the symbols V, E, F, =.  (see Author, 2013).  PSTs 
could use manipulatives and tools (e.g., applet, paper) to solve the problem.  After 
they solved the problem, they were asked to present and justify their strategy and 
solution to the class.   

During the 14th week of the course, PSTs participated in a levers simulator 
lesson which was centered on a simulator titled Balancing Act (PhET, 2011).  The 
problem was a total integration problem which blurred the lines between 
disciplines and could be solved by either problem-solving approach.  At the start of 
the lesson, PSTs were presented with Figure 2: a screen capture of the simulator  
which showed a fire extinguisher and a garbage can balanced on a lever.  The fire 
extinguisher weighed 5kg and was 2m left of the fulcrum and the trash can weighed 

 
Figure 2.  Screen capture of PhET Balancing Act 
 PhET: Balancing Act by University of Colorado, 2011, http://phet.colorado.edu/en/simulation/balancing-act.  Copyright 2013 by 
University of Colorado. 

 

http://illuminations.nctm.org/ActivityDetail.aspx?ID=70
http://phet.colorado.edu/en/simulation/balancing-act
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10kg and was 1m right of the fulcrum.  The PSTs were not told if the problem was a 
science or mathematics problem and were asked to solve it using the approach of 
their choice.  PSTs were then asked to create a formula or equation which could 
predict how these items could be balanced if moved.  For example, if the fire 
extinguisher were moved to 1m, where would one move the trash can to balance the 
lever?  What if the fire extinguisher were moved to 1.5m?  PSTs were told that one 
can solve the problem by simply looking at the screen capture, experimenting with 
the simulator, or using both. 

If PSTs wanted to use the simulator, they would have to take a laptop from a 
laptop cart in the room.  After the instructions, the PSTs were given approximately 
30 minutes to work in groups and complete the task.  During this time, some PSTs 
began to solve the problem on a sheet of paper, while others got a laptop and 
experimented with the simulator.  Meanwhile, the instructor moved among the 
groups, probed the PSTs’ ideas, and asked for explanations to the reasoning while 
not evaluating answers.  Typical responses to probing included “I experimented 
with the simulator until I noticed a pattern (Student 1, personal communication, 
April 2013),” “I remember doing a problem like this in high school, and I checked my 
idea with the screen capture (Student 2, personal communication, April 2013),” and 
“I had no idea how to solve the problem so I played with the simulator (Student 3, 
personal communication, April 2013).”  All 27 PSTs derived a formula which could 
correctly solve the problem. 

Materials and data collection 

As each PST completed the task, the instructor passed out a worksheet with the 
following questions:  (a) How did you solve the problem?  Did you use the simulator 
or only paper?; and  (b) You have participated in inquiry-based 5E activities which 
dealt with dry ice, lighting bulbs, owl pellets, preserved organisms, and 
electromagnets.  You also participated in problem-solving mathematics activities 
which dealt with acrobats and algebra, paper-shredding and rate, polyhedra applets 
and formula, and spinners and probability.  Based on these activities, do you think 
today’s activity was more of a mathematics or science problem (please only pick 
one)?  Why do you believe this?  After 30 minutes, the PSTs were asked to place 
their formula and accompanying work on a document camera which projected to a 
Smart Board.  PSTs were asked to be prepared to present their formula and 
reasoning, and to justify their rationale to anyone who disagreed or did not 
understand.  

Data analysis 

Research questions one and three were answered by using the constant 
comparison method and research question two was answered by simply tallying 
responses.  The method started with coding responses on the PSTs’ worksheets by 
attaching codes, or labels, to pieces of text that were relevant to a particular theme 
or idea.  Then passages of text from the worksheets were grouped into patterns 
according to the codes and subcodes (Miles & Huberman, 1994), and a focus coding 
table was created.  After looking over the worksheet responses along with the focus 
coding table, memos were written to study and understand the PSTs’ responses.  All 
of the themes are expanded upon in the results and discussion portion of this study. 

RESULTS  

The answer to research question one is that PSTs solved the problem with 
conjecture and test 48% (13/27), reason 44% (12/27), and experiment and collect 
data 41% (11/27).  Table 2 provides a description of PSTs’ responses to research 
question one.  The answer to research question two is 26 out of 27 PSTs categorized 
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the problem as one of mathematics.  Only one PST stated that it was a science 
problem.  The answer to research question three reports that 89% of the PSTs 
categorized the total integration levers simulator problem as one of mathematics 
because the problem was associated with formulas, equations, and numbers.  Table 
3 provides a description of PSTs’ responses to research question three.    

To conjecture and test, reason, and experiment and collect data are aspects of 
inquiry and problem-solving, and are shared learning processes found in the middle 
column of Figure 1.  The third shared learning process in the middle column is 
Predicting, Hypothesizing, and Investigating.  In science, hypotheses are tentative 
statements which serve as an explanation for some phenomenon in the natural 
world.  Hypotheses or aspects of hypotheses can be systematically tested.  
Hypotheses do not become theories, but they can contribute to or shape theories.  In 
mathematics, similar tentative statements are called conjectures, and less often 
hypotheses.  Through rigorous deductive reasoning, conjectures can be proven to 
form theorems about the mathematics world.  The main difference between 
scientific hypotheses and mathematical conjectures is that observed evidence in the 
natural world is necessary for the former but not the latter.  PSTs and their students 
should be able to make and test mathematical conjectures and scientific hypotheses 
(NGSS Lead States, 2013; NGACBA, 2010).  To some degree, all 11 problem-solving 
lessons in the course asked PSTs to make and test conjectures or hypotheses.   

Table 2. Memos 

Conjecture and test 

Conjecture and test was a theme that emerged in response to how PSTs solved the problem.  This theme appeared in 13 out of 27 
responses (48%).  PSTs stated that they either derived the formula from the screen capture or after having a conjecture and 
experimenting with the simulator.  After PSTs had a conjecture, they tested it.  PSTs’ responses included: “I knew I had an idea of 
how the formula was going to work….[and] I knew I was [heading] in the right direction.  I used the applet, applied my equation 
to three problems [and] knew that it was right” (Student 11, personal communication, April 2013).   “I applied my theory to the 
applet, and it proved to be [correct].” (Student 12, personal communication, April 2013).  “After I made my prediction, I tested my 
formula with the applet” (Student 13, personal communication, April 2012). “[W]e predicted that since the weight of the fire 
extinguisher is 5kg and the weight of the trash can is 10kg, the trash can is = fire extinguisher/2.  We pulled up the applet and 
tested our equation… ” (Student 13, personal communication, April 2013).   

Reason 
Another theme that emerged in response to how PSTs solved the problem was reason.  This theme appeared in 12 out of 27 
responses (44%).  PSTs used reasoning to explain their insight toward problem-solving and as a way to formalize and defend 
their thoughts to others.  PSTs’ responses included: “I knew that the fire extinguisher is ½ the weight of the trash can and the 
trash can is ½ the distance of the fire extinguisher.  This means that if you move the fire extinguisher to 1 [meter], the trash can 
would have to move to .5 [meters] for the two objects to balance.  And if the fire extinguisher was moved to 1.5 [meters], the 
trash can would have to be moved to .75 [meters], ½ of 1.5 [meters]” (Student 14, personal communication, April 2013).  “The 
equation…[is]…d1=2xd2.  This equation makes sense because the lighter object must have a greater distance to balance an object 
of greater weight with a closer distance” (Student 15, personal communication, April 2012).  “I used the applet to solve for the 
distance of the 10kg [trash can] when the 5kg [fire extinguisher] was at 1 meter.  I then moved the 5kg [fire extinguisher] to .5 
meter and used the applet to find the distance for 10kg [trash can] again.  I then wrote the equation out and replaced one of them 
with X.  I knew that mass one times distance one was equal to mass two times distance two because they had been balanced on 
the applet” (Student 17, personal communication, April 2013).    

Experiment and collect data 
The last theme that emerged in response to how PSTs solved the problem was experimenting and collecting data.  Some PSTs 
used the simulator to collect data and inductively derive a formula, while others deduced a conjecture from the screen capture 
and created scenarios with drawings.  This theme appeared in 11 out of 27 responses (41%).  PSTs’ responses included: “To solve 
the problem, we experimented with the computer simulation to test all the possibilities” (Student 18, personal communication, 
April 2013).  “I used the simulation to figure out the problem.  I…[created multiple balanced scenarios]…and then made a chart 
showing where each object should be placed in relation to each other to achieve balance” (Student 19, personal communication, 
April 2013).  “I solved the problem by creating two columns and putting down which masses they both balanced at.  Once I did 
this, I observed all the numbers and looked at the relationship of the numbers” (Student 20, personal communication, April 
2012). “I did not use the applet…Instead, I used paper and created a number line with jumps...[so I could]…manipulate the 
numbers in viewing relationships.  I also prefer to work on paper because I can write down thoughts right after solving a 
relationship.  I used the number line to figure out that the fire extinguisher or distance is = to 2x the distance of the trash can.” 
(Student 21, personal communication, April 2013).   
Note: PSTs’ responses to research question one. 
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Predicting, Hypothesizing, and Investigating are also slightly different in each 
discipline and can be found in either column of Figure 1.  NCTM Reasoning and Proof 
process standards, which are found in the first column, emphasize the importance of 
conjecture in mathematics.  PSTs and their students should be asked to make and 
investigate conjectures and use conjectures toward proofs.  In the total integration 
levers simulator problem, nearly half of all students made conjectures and moved 
toward proving their conjectures.  This was done by continuously testing and 
reevaluating conjectures throughout the problem-solving process.  Although PSTs 
did not formally prove the formula they used in the levers problem, many were 
using the necessary mathematical reasoning to prove it.  PSTs and their students 
must do the same in science.  Hypothesis, which is part of Exploration and found in 
the third column in Figure 1, is part of the inquiry 5E model.  Most of the PSTs did 
not have a scientific hypothesis for the levers problems because they didn’t know 
the theory necessary to solve the problem.  However, the next time they are asked to 
solve a similar problem, they will have a strong understanding of how to balance a 
lever and will be able to propose a hypothesis to solve the problem.  

Reason appears in the shared column in Figure 1 as Justify & Defend Solutions, 
Reasoning, Synthesize Ideas.  Reason is used in science and mathematics to 
construct and formalize ideas, to express insight into problem-solving, and to take 
steps toward testing ideas in defendable ways.  In mathematics, PSTs and their 
students should be able to use reason to develop and evaluate conjectures, and 
ultimately prove these arguments when applicable.  In science, PSTs and their 
students should use reason to develop and evaluate hypotheses, and either support 
or refute their hypotheses.  In the levers problem, PSTs used reason to correctly 
solve the problem and to explain and justify their formulas on paper.  When they 
wrote their response to the problem, they wrote it in a way which defended their 
strategy and solution.  This same reasoning was used when presenting their strategy 
and solution to their classmates on the document camera.  Presentation allowed 
them to create clear and organized arguments; this was especially helpful when 
others either disagreed or could not understand the presenter’s reasoning.  Reason 
was used in all 11 problem-solving activities in the course, and the justification of 
reasoning always occurred when PSTs presented their solutions and strategies to 
others. 

Experiment and collect data are closely associated with Predicting, 
Hypothesizing, Investigating; which is found in the center column of Figure 1.  PSTs 
and their students should understand how to systemically experiment and collect 
data to investigate and solve problems.  Experiment and collect data is more closely 
associated with science than mathematics because science often uses 
experimentation to gather information from and about the natural world.  Data that 
is collected through experimentation can be analyzed to become evidence which 
either supports or refutes a hypothesis, theory, or related mental schema.  Although 
science is more closely associated with experimentation and data collection, 

Table 3. Memos 

Formulas, equations, numbers 

A theme that emerged most often was Formulas/Equations/Numbers.  This theme appeared in 24 out of 27 responses (89%).  
These terms were used almost interchangeably to describe the problem as one of mathematics.  PSTs’ responses included: “The 
problem dealt with finding the relationships between various numbers and a formula [to represent] it” (Student 4, personal 
communication, April 2013).  “We used numbers to balance out an equation” (Student 5, personal communication, April 2013).  
“…[I]t involves coming up with an universal equation and using numbers that applies [sic] to all situations…” (Student 6, personal 
communication, April 2012).  “Since we had to find an equation and calculate our answers, we were using mathematics tools” 
(Student 7, personal communication, April 2013).  “We created a formula that could be applied to multiple variables and still be 
accurate every time…” (Student 8, personal communication, April 2013).  “[W]e had to create a formula using numbers that came 
from data” (Student 9, personal communication, April 2013). “I think this is more of a mathematics problem because it involves 
numbers” (Student 10, personal communication, April 2013).   
Note: PSTs’ responses to research question three. 
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mathematics, and more often than not applied mathematics, is also concerned with 
data collection.  For example, work in probability theory is often based on 
experimental work which yields data. 

In the levers problem, PSTs inductively and abductively solved the problem by 
using the simulator to experiment and collect data.  Some PSTs used the simulator to 
collect data by creating multiple scenarios and observing where the lever balanced.  
This data was collected and a pattern emerged which helped one derive the formula.  
Others solved the problem abductively by using the simulator to test their 
conjectures.  Interestingly, some PSTs deduced a conjecture from the screen capture 
and created scenarios with drawings.  Even with only the use of drawings, they 
experimented on paper and collected data to either support their conjecture or 
derive a formula.  To some degree, all 11 problem-solving lessons listed in the 
course asked PSTs to experiment and collect data. 

Twenty-four out of 27 (89%) PSTs categorized the total integration levers 
simulator problem as one of mathematics because the problem was associated with 
formulas, equations, and numbers.  As to be expected, this difference between the 
disciplines is not found in the middle column in Figure 1 because it is a difference.  
Formulas, equations, and numbers are most closely associated with Representations 
- Solve Problems which is found in the first column.  Representations like formulas, 
equations, numbers, and other symbols are often used as tools in mathematical 
problem-solving (NCTM, 2000).  These representations are usually flexible, reflect 
the problem-solving process, and can be used to communicate and justify 
information about the problem to others (Greeno & Hall, 1997).  Although science 
may use forms of representation like models, the abstracted nature of mathematics 
requires representation for the mathematics problem-solving process.  In the levers 
problem, PSTs used formulas, equations, or numbers as a representation of how the 
lever balanced when objects were moved.  For example, Table 3 reports that one 
PST used d1=2xd2 as a model to represent the behavior of the lever (Student 15, 
personal communication, April 2012).  This formula can explain the behavior of the 
lever if one knows the fire extinguisher’s (d1) and trash can’s (d2) distances from the 
fulcrum.  In theory, this representation can predict the lever’s behavior if the objects 
are very far from the fulcrum.  Representations were used as a tool to solve 
mathematical problems in the other four mathematics problem-solving lessons.        

DISCUSSION 

PSTs solved the levers problem with three similar learning processes and a 
problem-solving approach, and identified the problem-solving approach through 
one different learning process.  The results of the study show that sequenced 
integration in conjunction with methodological and process integration allows PSTs 
to: (a) enrich their understanding of epistemology by experiencing the similarities 
and differences between mathematics and science processes, and (b) enrich their 
science and mathematics understanding by using epistemological goals to drive an 
uninterrupted problem-solving process.  This study informs integration theory 
because the integrative nature of the course may have influenced PSTs to thoroughly 
investigate, solve, and identify the levers problem as mathematics, and identify the 
different learning process as formulas, equations, or numbers.  The ability to 
accomplish these tasks is evidence of learning.  If the course was centered on other 
forms of integration (e.g., total, enhanced, or parallel), PSTs may not have been able 
to name the different learning process and correctly identify the problem with the 
associated problem-solving approach.  This is because PSTs would have had no 
experiences in comparing the differences between mathematics and science, the two 
problem-solving approaches, or the 10 different learning processes.  If total, 
enhanced, or parallel integration were exclusively used in the course, PSTs would 
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have experienced only similarities:  This includes one problem-solving approach 
and, at most, 14 similar learning processes.             

This study also informs learning theory because PSTs were able to identify the 
different learning process between mathematics and science.  The ability to identify 
this process is evidence of learning because it represents a difference between the 
epistemology of mathematics and science.  Using constructivist learning theory to 
interpret the results, it can be hypothesized that the PSTs compared and contrasted 
their prior knowledge of the science and mathematics problems and approaches 
that they encountered in the courses.  This reflection allowed them to organize their 
knowledge in a more sophisticated manner and to think about the similarities and 
differences between the disciplines and their approaches.  Next, PSTs may have 
compared the levers problem to the mathematics problems that they encountered in 
the course.  Since the levers problem was similar to their prior knowledge of 
mathematics problems, the problem was assimilated.  The PSTs may then have 
compared the levers problem to their prior knowledge of the science problems.  
Since more differences were encountered between the levers problem and the 
science problems, disequilibrium occurred.  After further reflection, PSTs detected a 
different learning process which was common to the levers problem and 
mathematics problems, but not the science problems.  This new learning emerged 
through accommodation as the PSTs tried to emerge the levers problem into their 
prior knowledge of science problems.   

This study is timely because there appears to be a recent movement towards 
total, enhanced, and parallel integration in science, technology, engineering, and 
mathematics [STEM].  These forms of integration are centered on problems which 
are solved in the context of a dominant discipline or with one epistemic 
commitment.  In the recent report, STEM Integration in K-12 Education: Status, 
Prospects, and an Agenda for Research (NAENRC, 2014), there is an emphasis on 
these forms of integration and other kinds of STEM connections for integration.  The 
section on STEM connections contains the following: 

Regarding the nature of connection, integrated STEM education may 
bring together concepts from more than one discipline (e.g., 
mathematics and science, or science, technology, and engineering); it 
may connect a concept from one subject to a practice of another, such as 
applying properties of geometric shapes (mathematics) to engineering 
design; or it may combine two practices, such as science inquiry (e.g., 
doing an experiment) and engineering design (in which data from a 
science experiment can be applied).  (NAENRC, 2014, p. 42) 

These examples of integration are important because they maximize the number 
of connections or similarities between the disciplines, and therefore, are more likely 
than sequenced integration to enrich certain types of knowledge.   However, the 
report fails to recognize that when concepts are brought together from more than 
one discipline or a concept from one subject is applied to the practice of another, the 
unique epistemology of the dominate discipline guides the problem-solving process 
(Berland & Busch , 2012).  This means that the secondary discipline’s problem-
solving process is interrupted, rarely investigated in depth, and may yield in an 
inchoate understanding of the concept (Lehrer & Schauble, 2006).   

Mathematics is often a secondary discipline in solving STEM problems because 
its epistemological and ontological flexibility allows it to be used as a tool.  Using 
mathematics as tool, or mainly or always as a secondary discipline, works against 
the vision of the US reform movement which calls for an appreciation of 
mathematical epistemology (NCTM, 2000).  Ironically, mathematics’s flexibility in 
solving STEM problems does not allow students to see the interconnectedness and 
internal consistency of the discipline, and mathematical understanding may suffer.  
This may be the reason that mathematics has been reported to have fewer benefits 
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compared to other STEM disciplines during integration (see Hartzler, 2000).  This 
also may be the reason why mathematics achievements scores are lower for total, 
enhanced, and parallel integration compared to sequenced.  For example, a meta-
analysis of 31 integration studies in K-16 education found the following differences 
in mathematics achievement by forms of integration:  sequenced (ES=.85), parallel 
(ES=-11), partial (ES=.13), enhanced (ES=.17), and total (ES=.20) (Hurley, 2001).   

A practical example may best illustrate the issue with total, enhanced, and 
parallel integration.  It would be very difficult to integrate the following fourth grade 
Common Core standard with the other STEM disciplines while using mathematics as 
the dominate discipline: “Determine whether a given whole number in the range 1–
100 is prime or composite” (NGACBA, 2010, p.29).   The reason for this is 
mathematical problem-solving, the kind that leads to an understanding of 
interconnectedness and internal consistency, is not possible when guided by 
science, technology, and engineering questions within their more objective 
ontologies.  In this example, prime and composite numbers must be investigated 
with logic in a platonistic ontology.  It would not be possible to use, say, science as a 
secondary discipline because science uses observations from the natural world to 
answer its questions. 

There are two major limitations in the study.  The first is that there were few 
participants, and it may be difficult to generalize the finding to a larger population.  
The second is that the problem-solving approaches and learning processes used 
throughout the course may not have influenced PSTs’ responses to the levers 
problem.  The PSTs may have responded the same way to the levers problem if it 
were presented at the start of the course.  Further research may help address these 
and other limitations.  Other possible further research questions include the 
following:  Did the problem-solving approaches and learning processes influence 
PSTs to use similar approaches and processes in the problem-solving lessons taught 
to their elementary students?  Can PSTs identify which learning processes from 
Figure 1 were used to solve the levers problem; in other words, do they know that 
they used conjecture and test, reason, and experiment and collect data?  Do PSTs 
understand the similarities and differences between scientific inquiry and 
mathematical problem-solving, or do they see the learning processes as a sum of 
their parts?  And, lastly, how do the connections and integration espoused by 
NAENRC report (2014), compared to sequenced integration, enrich mathematics 
epistemology in PSTs? 
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