

 EURASIA Journal of Mathematics, Science and Technology Education, 2018, 14(12), em1610
 ISSN:1305-8223 (online)
OPEN ACCESS Research Paper https://doi.org/10.29333/ejmste/94227

© 2018 by the authors; licensee Modestum Ltd., UK. This article is an open access article distributed under the
terms and conditions of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).

 qian47@purdue.edu (*Correspondence) lehman@purdue.edu

Using Technology to Support Teaching Computer Science: A Study
with Middle School Students

Yizhou Qian 1*, James Lehman 1
1 College of Education, Purdue University, West Lafayette, USA

Received 13 February 2018 ▪ Revised 30 June 2018 ▪ Accepted 16 July 2018

ABSTRACT
Expansion of computer science education in K-12 schools is driving the need for quality
computer science teachers. Effective computer science teachers need both knowledge
of computer science and pedagogical content knowledge (PCK), which includes an
understanding of student misconceptions. In this study, by integrating an automated
assessment system, we identified common misconceptions of Chinese middle school
students in an introductory programming course. We found that students’ limited
English ability and existing math knowledge contributed to their misconceptions in
learning to program. We also noted that Chinese students with better English ability
made fewer programming mistakes. This finding differs from previous studies on
English speakers that found that students’ English ability had negative impacts on the
learning of programming commands. Our results suggest that computer science
teachers should integrate appropriate technology into instruction to support
identifying and addressing specific student misconceptions. We recommend that
teacher training programs in computer science pay attention to developing teachers’
technological pedagogical content knowledge (TPACK), the knowledge for effective
teaching with technology.

Keywords: computer science education, misconceptions, pedagogical content
knowledge (PCK), technological pedagogical content knowledge (TPACK)

INTRODUCTION
With technological developments over the past few decades, computing technology has become ubiquitous in
today’s world. Computer science, as an academic discipline, is receiving increasing attention of education
researchers, policymakers, and practitioners (Webb et al., 2017). Computer science education for K-12 students has
been expanding in many countries, such as the U.S. (Guzdial, 2016), the U.K. (Brown, Sentance, Crick, &
Humphreys, 2014), New Zealand (Bell, Andreae, & Robins, 2014), and others. While such expansion aims to make
computer science available to more students, a shortage of effective computer science teachers exists in many
countries (Gal-ezer & Stephenson, 2014; Webb et al., 2017). Teacher educators are challenged to effectively prepare
teachers of computer science to meet the growing demand.

An effective computer science teacher needs both knowledge of content and knowledge of how to teach
(Hubwieser, Magenheim, Mühling, & Ruf, 2013; Shulman, 1986; Yadav, Berges, Sands, & Good, 2016). Content
knowledge of a teacher is the knowledge about the subject matter. An effective computer science teacher needs to
know fundamental theories of computer science, programming concepts and languages, common algorithms and
data structures, and so forth. Teachers also possess pedagogical knowledge, a kind of content knowledge related
to the aspects of the content most relevant to its teaching (Shulman, 1986). However, simply knowing content and
pedagogy does not make a qualified teacher (Carlsen, 1999; Shulman, 1986). An effective teacher also must have
pedagogical content knowledge (PCK), which blends both content and pedagogy and aims to make instructional
content comprehensible to students (Shulman, 1987). PCK enables teachers to transform subject matter into a form
that students can understand and is considered a crucial part of teachers’ professional competence (Hill, Ball, &
Schilling, 2008; Hubwieser et al., 2013; Sadler, Sonnert, Coyle, Cook-Smith, & Miller, 2013).

https://doi.org/10.29333/ejmste/94227
http://creativecommons.org/licenses/by/4.0/
mailto:qian47@purdue.edu
mailto:lehman@purdue.edu

Qian & Lehman / Using Technology to Support Teaching CS

2 / 13

Despite the importance of PCK, we have limited understanding of computer science teachers’ PCK, i.e. CS PCK
(Saeli, Perrenet, Jochems, & Zwaneveld, 2011; Yadav et al., 2016). Nevertheless, researchers agree that teachers’
understanding of student misconceptions is a core component of PCK (Carlsen, 1999; Sadler et al., 2013; Saeli et al.,
2011; Shulman, 1986). When Shulman (1986) proposed the notion of PCK, he pointed out that teachers should have
“an understanding of what makes the learning of specific topics easy or difficult: the conceptions and
preconceptions that students of different ages and backgrounds bring with them to the learning of those most
frequently taught topics and lessons” (p. 9). In other words, an effective teacher needs to know what misconceptions
students encounter and be able to tailor the instruction to students’ misconceptions and existing knowledge.

Unfortunately, computer science teachers often have limited or incorrect understanding of their students’
misconceptions (Brown & Altadmri, 2017; Guzdial, 2015). More importantly, their teaching experience may be
ineffective in enhancing such understanding (Brown & Altadmri, 2017). Therefore, it is important to examine
potential ways to develop computer science teachers’ understanding of student misconceptions. This paper reports
on an exploratory study that investigated common misconceptions that students encountered in a middle-school
level programming class by integrating a technology tool into instruction and examined factors that might
contribute to those misconceptions. This paper also discusses the potential of technology for enhancing teachers’
understanding of student misconceptions in computer science.

STUDENT MISCONCEPTIONS IN INTRODUCTORY PROGRAMMING
In introductory-level computer science courses, computer programming is usually the core content (Guzdial,

2015). Learning to program is challenging, and students often exhibit a variety of misconceptions (Brown &
Altadmri, 2017; Qian & Lehman, 2017; Sorva, 2013), which are students’ inadequate or inaccurate understandings
of academic concepts (Smith, diSessa, & Roschelle, 1994; Taber, 2013). In the literature regarding student
misconceptions in introductory programming, researchers have used various terms to describe student
misconceptions, such as bugs, errors, difficulties, and mistakes (Qian & Lehman, 2017). We use the term
misconception in this paper as it is broadly inclusive and widely used by researchers (Qian & Lehman, 2017; Sorva,
2013).

Many studies have identified student misconceptions in introductory programming. For example, some
researchers have focused on cataloguing common compilation errors in student programs (Becker, 2016; Brown &
Altadmri, 2017). A compilation error is an error in code that makes a program fail to be compiled prior to program
execution. By analyzing millions of errors in students’ programs, Altadmri and Brown (2015) reported that the most
frequent student error in Java programming was unbalanced parentheses, brackets, or quotation marks. In Java
syntax, parentheses, brackets, and quotations marks are used in pairs, and students often omit one member of the
pair or the other. Previous studies have also discussed student misconceptions not producing compilation errors
(Qian & Lehman, 2017). Such misconceptions include misunderstandings of semantics and inappropriate use or
lack of programming strategies (Clancy & Linn, 1999; Kolikant & Mussai, 2008). For instance, students often have
difficulties in understanding complicated programming concepts such as classes and objects (Ragonis & Ben-Ari,
2005). Furthermore, novices often lack strategies for planning, composing, and debugging programs (Clancy &
Linn, 1999; Lister, Simon, Thompson, Whalley, & Prasad, 2006) such as forgetting to consider boundary conditions
and failing to locate errors in their programs (Fisler, Krishnamurthi, & Siegmund, 2016; Fitzgerald et al., 2008;
McCauley et al., 2008). Some beginners even believe that a successfully compiled program means a correct solution
even though it produces unexpected results (Kolikant & Mussai, 2008). While existing studies have captured
common student misconceptions in introductory programming, most of these studies have focused on college
students. Few studies have explored the programming misconceptions of middle school students.

According to the constructivist perspective, students’ prior knowledge significantly influences the construction
of new knowledge and is a dominant source of misconceptions (Jonassen, 1991; Qian & Lehman, 2017; Smith et al.,
1994). Students’ existing math knowledge is one factor that has been shown to contribute to misconceptions in

Contribution of this paper to the literature

• We used an automated assessment system and its data to identify student misconceptions in introductory
programming. Prior studies on such systems paid little attention to identifying student misconceptions, yet
knowledge of misconceptions is important for teachers’ pedagogical content knowledge.

• Our subjects were Chinese middle school students, while previous studies mainly focused on college
English speakers.

• Our results indicated that for Chinese students, many programming misconceptions are related to their
limited English ability, and better English ability may reduce misconceptions. In contrast, previous research
on English speakers found that English is a factor that can interfere with the learning of programming.

EURASIA J Math Sci and Tech Ed

3 / 13

introductory programming (Clancy, 2004; Qian & Lehman, 2017). For example, students may fail to distinguish
variables and variable operations in algebra and those in computer programming which are quite different (Clancy,
2004). On the other hand, students’ math ability is also considered as a key predictor of success in learning to
program (Bennedsen & Caspersen, 2005). In other words, students’ prior math knowledge may have both positive
and negative impacts on their learning of programming. Another factor that can interfere with the learning of
programming constructs is students’ natural language (Bonar & Soloway, 1985; Bruckman & Edwards, 1999; Miller,
2014). Students often inappropriately link a word’s meaning in English with the same word in the programming
language (Bonar & Soloway, 1985; Miller, 2014). As most programming languages are based on English, students’
English ability may have different impacts on misconceptions of English and non-English speakers. While prior
research has investigated factors contributing to student misconceptions in learning to program, most of them have
focused on English speakers. Limited research has examined the potential impact of non-English speakers’ English
ability on their misconceptions in computer programming.

Moreover, student misconceptions in computer science are usually latent and difficult to detect (Sorva, 2013;
Yadav et al., 2016). Computer science teachers often fail to accurately gauge novices’ difficulties because of their
“expert blind spot” (Guzdial, 2015). Basically, experienced programmers often forget what it was like when they
first began programming and so fail to see the mistakes novices make. Thus, exploring the potential of technology
for improving teachers’ understanding of student misconceptions can be important. In computer science education,
one widely used instructional tool is the automated assessment system (De-La-Fuente-Valentín, Pardo, & Delgado
Kloos, 2013; Douce, Livingstone, & Orwell, 2005). An automated assessment system is a tool that can automatically
evaluate the correctness of students’ programs by applying certain assessment techniques and algorithms. Such
systems can reduce instructors’ evaluation workload and identify erroneous student solutions. The data collected
by an automated assessment system can be a good resource for analyzing student errors. However, few studies
have discussed the use of automated assessment systems for identifying common student misconceptions.

PURPOSE OF THE STUDY
The goal of this exploratory study was to identify common misconceptions that Chinese middle school students

encountered in introductory programming by using an automated assessment system. As prior studies indicated
that students’ math and English ability were two important factors that might affect their misconceptions in
introductory programming, another focus of this study was to investigate the relationships between students’
programming misconceptions and their math and English ability. Based on the results, the potential of using
technology to enhance computer science teachers’ understanding of student misconceptions is discussed. This
study was guided by the following two research questions:

RQ1. What are common misconceptions held by Chinese middle school students in introductory
programming?

RQ2. Are there any relationships between students’ programming misconceptions and their math and English
ability?

METHODOLOGY

Subjects and Research Context
The research subjects in this study were a group of 33 middle school students (16 girls and 17 boys) from a city

in East China. These students were in Grade 7, which is the first year of middle school in China. They took an
introductory 14-week computer science course focused on Pascal programming. Students attended one 90-minute
course block every week. Programming concepts covered in the course included Program Structure, Input and
Output, Variables, Conditionals, Loops, and Functions. The programming environment used in the course was
Dev-Pascal 1.9.2. Computer science was not a core course but was required for all the students in this middle school.
None of the students in the study had taken any formal computing classes prior to this course. Students in this
study had learned basics of algebra, which is often considered as a prerequisite of learning computer programming.
For instance, they had learned how to solve linear equations and inequalities. English was taught as a required
academic subject beginning in the 3rd grade in schools of the city. Thus, these students had had about four years’
experience in English.

In this study, the SangTian Programming Learning Environment (SPLE) was employed in the instruction to
support the identification of student misconceptions. SPLE is an automated assessment system for learning Pascal
programming and was designed by the course instructor (the first author). SPLE has a pool of 56 programming
problems, which were presented in Chinese. Figure 1 presents a translated example problem. Each problem had
several test cases, which were pairs of input data and expected output. To solve a problem in SPLE, a student had

Qian & Lehman / Using Technology to Support Teaching CS

4 / 13

to write a program to produce output that correctly matched the expected output. If the solution was incorrect, the
student was informed that errors existed in the solution and could submit new solutions until his or her solution
was correct. If the solution was correct, the problem was considered successfully solved and could not be solved
again by that student.

In addition, SPLE was designed in a game-based way (see Figure 2 for the user interface). Each student created
his or her own avatar in SPLE to solve problems. When a student solved a problem in SPLE, his or her avatar gained
experience points. Every problem in SPLE had a difficulty level, which was from 1 (lowest) to 10 (highest). Solving
a higher difficulty-level problem gave more experience points. When the student’s avatar accumulated enough
experience points, higher difficulty-level problems would be unlocked, and the student could attempt the harder
problems. As the course progressed, students could use the achievement system and the leaderboard to track their
learning progress and compare their performance with others. Thus, the game-based design motivated students to
solve more programming problems.

The use of SPLE in the instruction also benefited the instructor. In every class, the instructor presented several
worked-out examples to demonstrate ways of applying the learned statements to solving problems. After the
demonstration, the students would do individual practice and solve problems in SPLE. The instructor did not have
to grade students’ solutions because SPLE assessed the solutions automatically. The instructor only needed to offer
necessary help upon request. Moreover, the instructor could use the backend to track students’ learning progress.
Hence, the instructor could focus on providing personalized support for students and enhancing the instructional
design, rather than grading.

Figure 1. A Translated Example Problem in SPLE

Figure 2. A screen Shot of the User Interface of SPLE

EURASIA J Math Sci and Tech Ed

5 / 13

As an automated assessment system, SPLE collected all student solutions and output. These data were valuable
for researchers to investigate students’ learning difficulties (e.g., misconceptions) and understand the evolution of
students’ (mis)conceptions of certain programming concepts. In this study, students’ solutions and output were the
data source for misconception analysis. As we also examined the relationships between students’ misconceptions
and their math and English ability, we collected students’ academic scores in their math and English courses from
the academic assessment department of the school as a proxy measure of students’ math and English ability. These
scores were averages of each student’s scores on the formal exams in each subject. The maximum score for each
subject was 100 points.

Data Analysis
Students’ incorrect solutions in SPLE were used to analyze their misconceptions. When the same error existed

in different students’ solutions, these students might share common misconceptions. Hence, to identify common
student misconceptions, the first step was to find common errors shared by different students. Two types of errors
in students’ programs were analyzed: compilation errors and non-compilation errors. A compilation error is an
error that makes a program fail to be compiled. When a student solution to a problem has no compilation errors
but produces incorrect output, it means that this solution has non-compilation errors.

Compilation errors were not specific to the programming problems in SPLE but were mainly Pascal syntax
errors and certain semantic errors associated with the incorrect use of programming constructs. In this study, a
common compilation error was defined as an error that was identified in solutions of at least one-quarter of the
students. In other words, when eight or more students had the same compilation error in their solutions, this
compilation error was considered common. Students’ incorrect solutions that produced common compilation
errors were further analyzed for evidence of specific misconceptions.

Non-compilation errors were problem-specific because they were the result of failing to apply appropriate
programming knowledge and strategies to solve a given problem. However, non-compilation errors of different
problems might share the same underlying student misconception. In this study, when a problem was solved by
more than half of the students (>=17), but a quarter or more students who solved this problem shared the same
non-compilation error, this error was defined as a common non-compilation error. The incorrect student solutions
that produced these common non-compilation errors were analyzed for student misconceptions.

To answer RQ2, quantitative analysis was conducted. In the literature of computer science, no widely accepted
measure of student misconceptions has been established, but some researchers have used the number of errors
made by students as an approximate measure (see Becker 2016). In this study, every student’s error rate of solving
problems in SPLE was calculated as an approximate measure of students’ programming misconceptions. When a
student solved a problem, his or her error rate of this problem was the percentage of the incorrect solutions he or
she submitted to solve this problem. For example, if Mike submitted 4 solutions (3 incorrect solutions and 1 correct
solution) to solve problem X, his error rate of problem X was 75%. An overall error rate for each student was
calculated as the mean of the error rates of all the problems he or she solved. Hence, when a student had a lower
error rate, it indicated that he or she made fewer mistakes and might have fewer misconceptions. Correlations were
computed to analyze relationships between students’ error rates and their academic performance in math and
English. In addition, a stepwise regression analysis was used to identify significant factors that predicted the error
rate. The significance levels for entering and removing a variable were set to .15 and .075 respectively, as
recommended by Derksen and Keselman (1992).

RESULTS

RQ1: What are Common Misconceptions held by Chinese Middle School Students in
Introductory Programming?

In total, the thirty-three students submitted 2380 solutions, of which 1293 solutions were incorrect. Among the
incorrect solutions, 349 had compilation errors, and 944 had non-compilation errors. Ten common compilation
errors and nine common non-compilation errors were identified (see Table 1 and 2). The two tables also present
the programming concepts relevant to and the occurrence rates of these errors. For the occurrence rate of a
compilation error, the numerator is the number of students who had the error, and the denominator is the sample
size (33). For the occurrence rate of a non-compilation error, the numerator is the number of students who had the
error, and the denominator is the number of students who solved the relevant problem. In addition, for non-
compilation errors, the specific problems are included in the table. Details about these errors and the underlying
student misconceptions are described and discussed in the following sections.

Qian & Lehman / Using Technology to Support Teaching CS

6 / 13

Common compilation errors and underlying misconceptions
Three common compilation errors were directly related to Pascal program structure, including missing

semicolon (#1), missing begin (#2), and full stop error (#3). In Pascal programming, the semicolon is a necessary
punctuation mark to terminate a statement. However, students often forgot to add semicolons, and missing
semicolon was the most common compilation error in this study. In a correct Pascal program (see Figure 3), the
main program block, which includes all the executable statements, should start with the keyword begin and end
with the keyword end with a full stop (.). Our analysis of student code showed that students often forgot to add the
begin keyword when starting the main program block. Interestingly, while code blocks inside the main block should
be enclosed within a pair of begin and end followed by a semicolon (;), students did not miss that begin. However,
many of them confused “end.” with “end;” and got the full stop error. The end keyword at the end of the main
program block should be followed by a full stop (.), but many students used a semicolon or forgot to add the full
stop. While the three errors appear to be different, the underlying misconception was the same: students’ deficient
understanding of Pascal program structure. It is not surprising that these novices often forgot necessary
punctuation or structure keywords as the Pascal syntax was new to them.

The Chinese character error (#4) was also related to program structure, but it was caused by the use of Chinese
punctuation. Pascal is an English-based programming language and requires English punctuation. However, when
the Chinese students in this study typed their code, they sometimes mistakenly used Chinese punctuation. Chinese
punctuation symbols such as ：；。（）(respectively a colon, a semicolon, a full stop, a pair of parentheses) look
almost identical to the English equivalents but are not recognized by the compiler. Therefore, it was difficult for
these Chinese middle school students to enter proper punctuation in their programs. This was a special challenge
for Chinese students.

In Pascal, an identifier is a sequence of characters that represents the name of a variable, a function, and so forth.
The identifier not found (#5) error occurs when an identifier such a variable name or a function name cannot be
found. After analyzing students’ code, we found that the major source of this error was failing to declare variables
before using them. In Pascal, variable declaration using the var keyword is required before a variable can be used
(see line 2 in Figure 3); however, students in this study often failed to do this. Another source of the identifier not
found error was misspelling the identifiers. For example, one student declared the variable sum but then spelled it
sun in the code. Some students also failed to correctly spell built-in functions. For example, the function writeln,
which means “write a line on the screen”, was misspelled as writein by some students. The function sqrt calculates
the square root of a number, but one student spelled it as sprt. Because these Chinese students might not know the
English meaning of the identifiers, correct spelling was a special challenge for them.

Table 1. Common Compilation Errors
Error Occurrence Rate Relevant Concept
1 missing semicolon 22/33 (67%) Program Structure
2 missing begin 16/33 (48%) Program Structure
3 full stop error 8/33 (24%) Program Structure
4 Chinese character error 15/33 (45%) Program Structure
5 identifier not found 15/33 (45%) Variables, Functions
6 illegal expression 14/33 (42%) Variables
7 incompatible types 12/33 (36%) Variables
8 colon issue 10/33 (30%) Variables
9 mismatched parenthesis 9/33 (27%) Program Structure, Variables
10 missing then 8/33 (24%) Conditionals

Table 2. Common Non-Compilation Errors
Error Problem Title Occurrence Rate Relevant Concept
1 missing newline Multiples of Three 11/24 (46%) Output, Loops
2 missing newline Natural Numbers II 14/26 (54%) Output, Loops
3 missing newline The Multiples of 7 6/19 (32%) Output, Loops
4 missing newline Stars 12/33 (36%) Output, Loops
5 missing newline Adding Numbers 8/27 (30%) Output, Loops
6 infinite loop Prime Factorization 5/20 (25%) Loops
7 wrong output Prime Factorization 5/20 (25%) Output
8 missing output Prime Factorization 6/20 (30%) Output
9 wrong operation Arithmetic Operations 7/28 (25%) Variables

EURASIA J Math Sci and Tech Ed

7 / 13

The errors illegal expression (#6), incompatible types (#7), and colon issue (#8) were related to variables and
variable operations. An illegal expression is an expression that Pascal cannot understand. In Pascal, the assignment
operator is a colon and an equals sign (:=), and a single equals sign (=) is the equality operator that checks whether
the values of two operands are equal. However, many students failed to distinguish the two operators. For example,
one student tried to use this expression p=(a+b+c)/2; to assign the value of expression on the right side to the variable
p, but he got the illegal expression error because he used the equality operator rather than the assignment operator.
One student wrote this expression 2c:=(a+b)*(b-a+1); in her code and thought the value of c would be calculated
automatically by Pascal. However, this was an illegal expression because 2c, while an acceptable expression in
math, is not a valid expression in Pascal. The incompatible types error occurs when the programmer tries to assign
a value to a variable with a different data type or perform operations that are not allowed by the variable type. For
example, the result of division (/) in Pascal is a real type (real number), but students in this study often tried to
assign the real value to an integer variable. One problem in SPLE asked students to output n asterisks (*) on the
screen, and one student used this line writeln(n * ‘*’); in her solution. However, an integer value cannot be multiplied
by a character, so an incompatible types error occurred. The colon issue is related to variable declaration. When
declaring variables in Pascal, a colon should be placed between variable names and variable types (see line 2 in
Figure 3). The colon issue occurs when the colon is missing, or an unnecessary equals sign is added after the colon.
The underlying misconception of these three errors was confusion between variables and variable operations in
math and computer programming. In math, students do not need to define variable types, precision, and allowed
operations, and the equals sign means equality. However, in Pascal programming, every variable has a type that
defines the precision and allowed operations, and the equals sign is a relational operator that checks for equality.

The mismatched parenthesis (#9) error seems to be straightforward, but our analysis of students’ code
indicated that most of the time it was caused by illegal expressions in parenthesis rather than missing parentheses.
Code pieces like writeln(2+3a); and readln(a’’b’’c); were invalid in Pascal, and because the Pascal compiler could not
interpret the code after the open parenthesis it failed to “see” the closing parenthesis and produced the mismatched
parenthesis error. The missing then (#10) error was caused by similar issues. Here are two examples of student
code that produced this error: (1) if (a>b),(b>c) then; (2) if b mod a:=0 then. In the first example, the comma (,) was an
illegal operator; a Boolean and operator should be used instead. In the second example, the assignment operator
(:=) should be replaced by the equality operator (=). Because of the incorrect use of operators, the Pascal compiler
reported the keyword then was missing. In summary, these two errors resulted from a variety of student
misconceptions, including problematic knowledge of the program structure, confusion between math and
programming expressions, and misunderstandings of operator meanings.

Common non-compilation errors and underlying misconceptions
Among the nine common non-compilation errors, five were the same missing newline error. When solving

problems in SPLE, students were required to have a newline at the end of the output of their programs. This rule
was easy to implement by using the built-in function writeln. We found that all five problems with the missing
newline error were among the first several Loops problems. The loop construct is often considered challenging to
beginners. When students in this study started to solve loops-related problems, they might have experienced high
cognitive load (Sweller, 1988) and forgot the newline requirement. Thus, this error did not frequently occur until
students started to use the loop constructs. The underlying problem here probably was not students’ flawed

Figure 3. An Example Pascal Program

Qian & Lehman / Using Technology to Support Teaching CS

8 / 13

understanding of the output construct but rather their insufficient awareness or misunderstandings of loops in
Pascal programming.

Three common non-compilation errors were related to the problem Prime Factorization. Two of them, wrong
output and missing output, were related to the concept Output. This problem asked students to write a program
to perform prime factorization of a number n and present the results like 180=2*2*3*3*5. The number n is a variable,
and the user will enter its value. A quarter of the students who solved this problem directly output the character
“n” instead of the value of n and got the wrong output error. Six students forgot to output the value of n and the
equals sign and got the missing output error. The other error was the infinite loop error. Because nested loops
were used to solve this problem, these novices had difficulty distinguishing the loop variables of the inner and
outer loop. As a result, it is not surprising that infinite loops existed in some of the programs. While the three errors
seemed to be unrelated, they probably were all due to students’ difficulties in understanding and applying nested
loops. When the nested loops were incorrectly constructed, students made an infinite loop. When the nested loops
were successfully handled, students failed to manage the output statement.

Another common non-compilation error was related to variable operations. The Arithmetic Operations problem
asked students to write a program that reads two integers from the user and outputs the expressions of the four
basic arithmetic operations of the two integers. For the division, this problem requires integer division, which
means only presenting the integer quotient. For example, if the two numbers are 10 and 4, for the arithmetic
operation division, a correct solution should output 10/4=2, rather than 10/4=2.5. However, seven students output
the decimal places and made a wrong operation error. In Pascal, the operator div is designed for integer division.
As this special operator does not exist in math, students had difficulty using it as necessary. This error again was
related to the student misconception resulting from confusing variables and variable operations in math and
programming.

RQ2: Are there any Relationships between Students’ Programming Misconceptions and
their Math and English Ability?

Correlations between students’ error rate and their academic scores in math and English were computed (see
Table 3). Students’ error rate in the programming course significantly correlated with their academic performance
in math (r = -.39, p < .05) and English (r = -.49, p < .01). In other words, students with better English or math ability
made fewer errors in their programs.

To further understand the relationships, a stepwise regression analysis was conducted to examine important
factors to predict students’ error rate (see Table 4 for summaries). The results of the stepwise regression indicated
that students’ English score significantly predicted the error rate, β = -.49, p < .01, and the best model had only the
English score as the predictor, R2= .24, F(1, 31) = 9.87, p < .01. The results suggest that when the English ability of
Chinese students is considered, their math ability becomes unimportant for explaining their programming
misconceptions. In other words, for Chinese students, better English ability, rather than math ability, may help to
reduce their misconceptions in learning to program.

Table 3. Correlations between Error Rate and Academic Performance (N = 33)
 Error Rate Math English

Error Rate -
Math -.39* -

English -.49** .47** -
Note. * p < .05. ** p < .01

EURASIA J Math Sci and Tech Ed

9 / 13

DISCUSSION

Student Misconceptions in Computer Science
This study identified common student misconceptions in computer science using thousands of incorrect

programs of a group of Chinese middle school students. Some misconceptions identified have also been reported
in previous studies. For example, students’ deficient understanding of the program structure (e.g., missing
semicolon and mismatched parenthesis) has been found to be the most common student misconception in previous
studies (Altadmri & Brown, 2015; Becker, 2016). Using an advanced programming environment that supports
identifying syntax errors and/or providing novice-friendly error messages can help to address this misconception
(Becker, 2016; Qian & Lehman, 2017). In addition, students’ confusion between their math knowledge and
programming knowledge was also noted as a common misconception in prior research (Clancy, 2004; Qian &
Lehman, 2017). Explicitly teaching the differences between variables and variable operations in computer
programming and math may help to ameliorate the problem. For example, using the cognitive conflict strategy,
which explicitly presents details of the new knowledge that conflicts students’ existing knowledge, can be an
effective way to challenge students’ misconceptions and promote conceptual change (Ma, Ferguson, Roper, &
Wood, 2011).

On the other hand, our study identified special difficulties experienced by Chinese students. Our results suggest
that Chinese students may have misconceptions related to their limited English ability. In this study, the
programming language was English-based, but the students had limited English ability. While English was taught
as an academic subject beginning in the 3rd grade in schools of that city, so the students had had four years’
experience in English, these students may not have understood all the English words in the programming language
and environment. They often misspelled identifiers and had difficulties understanding the English-based
programming commands. Another interesting finding was students’ inappropriate use of Chinese punctuation in
their code. While English learners will not have such problems, the Chinese punctuation issue occurred repeatedly
in these Chinese students’ programs and was difficult to debug because the symbols look nearly identical to their
English equivalents. The results of our study suggest that limited English ability may lead to certain difficulties in
learning programming for non-English speakers using an English-based programming language. The results of the
quantitative analysis also support this argument. Our results showed that students with better English ability made
fewer mistakes in programming. While their math ability was also correlated with their programming error rate,
only the English ability of these Chinese students was important for explaining the variance of the error rate in the
regression model.

This finding conflicts with the results of previous studies on English speakers that found that students’ natural
language may have negative impacts on the learning of programming commands (Bruckman & Edwards, 1999;
Miller, 2014). For instance, students who are English speakers often inappropriately link a word’s meaning in
natural language with the same word in the programming language (Bonar & Soloway, 1985; Miller, 2014). Students
may believe that the value of the variable “smaller” is always smaller than the value of the variable “larger” even

Table 4. Summaries of the Models and Stepwise Selection
a. Summary of Model with Math and English Scores

Variable Beta Std. Error β t
Intercept 255.63 74.23 3.44**

Math -.46 .39 -.21 -1.19
English -2.05 .92 -.39 -2.23*

R2 .27
F 5.71**

Note. * p < .05. ** p < .01

b. Summary of Model with English Score
Variable Beta Std. Error β t
Intercept 262.06 74.53 3.52**
English -2.56 .81 -.49 -3.14**

R2 .24
F 9.87**

Note. ** p < .01

c. Stepwise Selection Summary
Step Variable Added/Removed R2 Adj. R2 C(p) AIC RMSE

1 English addition 0.24 0.22 1.93 255.72 10.98
Note. RMSE: Root Mean Square Error

Qian & Lehman / Using Technology to Support Teaching CS

10 / 13

though variable names are independent of their values. According to Taber (2014), when a term’s scientific meaning
is different from how it is used in everyday life, students may form misconceptions about the term. However, when
Chinese students learn to program, they may think in Chinese instead of English. Hence, the English meaning of
those programming terms may not negatively affect their thinking. On the contrary, knowing the meaning of the
English terms may significantly improve their learning of computer programming (Qian & Lehman, 2016).
Therefore, when teaching computer programming to Chinese students, it is important to stress the meaning of the
English-based programming commands to help them understand programming concepts.

Potential of Technology for Enhancing Computer Science Teachers’ Understanding of
Student Misconceptions

While knowledge of student misconceptions is a key part of a teacher’s PCK, computer science teachers often
show a weak understanding of student misconceptions, and their teaching experience may not help to enhance that
understanding (Brown & Altadmri, 2017; Guzdial, 2015). On the one hand, the “expert blind spot” often prevents
computer science teachers from precisely evaluating the difficulties faced by their students (Guzdial, 2015). On the
other hand, most misconceptions in computer science are latent and may not be observed during traditional
instruction (Sorva, 2013; Yadav et al., 2016). In this study, an automated assessment system was integrated into
instruction to support identifying common student misconceptions. By using the data in the system and applying
a simple misconception-identification algorithm, common misconceptions of this group of Chinese middle school
students were captured. Currently, the automated assessment system used in this study, SPLE, can identify difficult
problems (e.g., problems with high error rates), track students’ learning progress (e.g., the number of solved
problems, error rates, etc.), and also collect all student data (e.g., students’ solutions to problems). The identification
of common student misconceptions is not automatic, and this study relied on the researchers to gather and examine
the data using the procedures described in the Methodology section. Future research of SPLE will focus on making
the misconception identification automated and developing components that can track the evolution of students’
(mis)conceptions of certain programming concepts by comparing successive versions of solutions to one problem
developed by one particular student. When an automated assessment system has these functionalities built-in, it
can not only help computer science teachers develop better understanding of student misconceptions but also
provide support for improving instructional design.

In addition to automated assessment systems, researchers of computer science education have developed other
types of technology tools to support teaching computer science. For example, code visualization tools such as
Online Python Tutor (Guo, 2013) can illustrate program execution for students. As certain student misconceptions
in computer science are caused by students’ misunderstandings of code execution (Sorva, Karavirta, & Malmi,
2013), illustrating the steps of how a program executes may help to address misconceptions. In addition, an
intelligent tutoring system, which can provide corrective feedback when students have mistakes in their solutions,
is another useful tool (Gerdes, Heeren, Jeuring, & van Binsbergen, 2017; Rivers & Koedinger, 2017). Providing
immediate feedback using an intelligent tutoring system may help to address students’ misconceptions in a timely
manner.

While technology tools have the potential to improve computer science teachers’ PCK, effective teaching with
technology requires technological knowledge (Koehler & Mishra, 2009). By adding the technology dimension to
PCK, Mishra and Koehler (2006) proposed the notion of technological pedagogical content knowledge, which is
now called TPACK (Koehler & Mishra, 2009). TPACK is the knowledge about how to effectively use technology in
a specific teaching context to improve teaching. In other words, teachers’ technological knowledge should not be
independent of pedagogy or content but should be connected to content-specific pedagogy (Graham, 2011). Hence,
it is important for computer science teacher training programs to consider developing teachers’ TPACK.
Nowadays, teachers’ TPACK is considered as a core competency in disciplines such as mathematics and science
and has been investigated by many researchers (Alrwaished, Alkandari, & Alhashem, 2017; Gonzalez & González-
Ruiz, 2017; Jang & Chen, 2010; Schmidt et al., 2009). However, in computer science education, more research is
needed to examine teachers’ TPACK.

Limitations
While this study found useful results, it has several limitations. For one, the student sample used in this study

may have threats to validity of the results. These middle school students were from one city in East China, and the
sample size was relatively small. Hence, they may not be representative of the general population of middle school
students learning introductory programming. Second, the use of students’ academic scores in their math and
English courses as a proxy measure of students’ math and English ability might not be accurate. Some aspects of
students’ math and English ability might not be tested and measured in those academic exams. Third, certain
common misconceptions were not addressed by this study. This study identified common student misconceptions

EURASIA J Math Sci and Tech Ed

11 / 13

using the data collected by SPLE. However, the problems in SPLE do not cover all the concepts of Pascal
programming. For instance, students were not required to construct their own procedures or functions to solve
problems in SPLE. Thus, their misconceptions related to Pascal procedures and functions may be ignored by this
study. Finally, in this study, the course and problems were all based on Pascal, and thus findings may not generalize
to other programming languages.

CONCLUSION
With the expansion of computer science education in K-12 schools, the need for quality computer science

teachers is increasing. An effective computer science teacher needs to have both the knowledge of computer science
and PCK. One core component of teachers’ PCK is the understanding of student misconceptions. In this study, by
integrating the SPLE system, we identified the common programming misconceptions of a group of Chinese middle
school students. We found that students’ limited English ability and existing math knowledge contributed to their
misconceptions in learning to program. We also noted that students with better English ability made fewer mistakes
in their programs. Computer science teachers need to be cognizant of these relationships and tailor their instruction
to help students who may have difficulties caused by math knowledge and/or limited English ability.

Our results suggest that appropriate technology integration is able to enhance computer science teachers’ PCK.
Hence, training computer science teachers to use technology tools to support their teaching can be a potential way
to produce more quality teachers. We recommend that teacher training programs in computer science pay attention
to developing teachers’ TPACK, which is the knowledge for effective teaching with technology. More research is
needed to investigate computer science teachers’ TPACK.

REFERENCES
Alrwaished, N., Alkandari, A., & Alhashem, F. (2017). Exploring in- and pre-service science and mathematics

teachers’ technology, pedagogy, and content knowledge (TPACK): What next? Eurasia Journal of
Mathematics, Science and Technology Education, 13(9), 6113–6131.
https://doi.org/10.12973/eurasia.2017.01053a

Altadmri, A., & Brown, N. C. C. (2015). 37 million compilations: Investigating novice programming mistakes in
large-scale student data. In Proceedings of the 46th ACM Technical Symposium on Computer Science Education
(pp. 522–527). New York, New York, USA: ACM Press. https://doi.org/10.1145/2676723.2677258

Becker, B. A. (2016). An effective approach to enhancing compiler error messages. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education - SIGCSE ‘16 (pp. 126–131).
https://doi.org/10.1145/2839509.2844584

Bell, T., Andreae, P., & Robins, A. (2014). A case study of the introduction of computer science in NZ schools. ACM
Transactions on Computing Education, 14(2), 1–31. https://doi.org/10.1145/2602485

Bennedsen, J., & Caspersen, M. E. (2005). An investigation of potential success factors for an introductory model-
driven programming course. In Proceedings of the 2005 international workshop on Computing education research
- ICER ‘05 (pp. 155–163). New York, New York, USA: ACM Press. https://doi.org/10.1145/1089786.1089801

Bonar, J., & Soloway, E. (1985). Preprogramming knowledge: A major source of misconceptions in novice
programmers. Human-Computer Interaction, 1(2), 133–161. https://doi.org/10.1207/s15327051hci0102_3

Brown, N. C. C., & Altadmri, A. (2017). Novice java programming mistakes: Large-scale data vs. educator beliefs.
ACM Transactions on Computing Education, 17(2), 7:1--7:21. https://doi.org/10.1145/2994154

Brown, N. C. C., Sentance, S., Crick, T., & Humphreys, S. (2014). Restart: The resurgence of computer science in uk
schools. ACM Transactions on Computing Education, 14(2), 1–22. https://doi.org/10.1145/2602484

Bruckman, A., & Edwards, E. (1999). Should we leverage natural-language knowledge? An analysis of user errors
in a natural-language-style programming language. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems- CHI ‘99 (pp. 207–214). New York, NY, USA. https://doi.org/10.1145/302979.303040

Carlsen, W. (1999). Domains of teacher knowledge. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining
pedagogical content knowledge: The construct and its implications for science education (pp. 133–144). Kluwer
Academic Publishers.

Clancy, M. (2004). Misconceptions and attitudes that interfere with learning to program. In S. Fincher & M. Petre
(Eds.), Computer Science Education Research (pp. 85–100). London, UK: Taylor & Francis Group.

Clancy, M. J., & Linn, M. C. (1999). Patterns and pedagogy. ACM SIGCSE Bulletin, 31(1), 37–42.
https://doi.org/10.1145/384266.299673

https://doi.org/10.12973/eurasia.2017.01053a
https://doi.org/10.1145/2676723.2677258
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/2602485
https://doi.org/10.1145/1089786.1089801
https://doi.org/10.1207/s15327051hci0102_3
https://doi.org/10.1145/2994154
https://doi.org/10.1145/2602484
https://doi.org/10.1145/302979.303040
https://doi.org/10.1145/384266.299673

Qian & Lehman / Using Technology to Support Teaching CS

12 / 13

De-La-Fuente-Valentín, L., Pardo, A., & Delgado Kloos, C. (2013). Addressing drop-out and sustained effort issues
with large practical groups using an automated delivery and assessment system. Computers & Education,
61(1), 33–42. https://doi.org/10.1016/j.compedu.2012.09.004

Derksen, S., & Keselman, H. J. (1992). Backward, forward and stepwise automated subset selection algorithms:
Frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology,
45(2), 265–282. https://doi.org/10.1111/j.2044-8317.1992.tb00992.x

Douce, C., Livingstone, D., & Orwell, J. (2005). Automatic test-based assessment of programming. Journal on
Educational Resources in Computing, 5(3), 4:1-13. https://doi.org/10.1145/1163405.1163409

Fisler, K., Krishnamurthi, S., & Siegmund, J. (2016). Modernizing plan-composition studies. In Proceedings of the 47th
ACM Technical Symposium on Computing Science Education - SIGCSE ‘16 (pp. 211–216). New York, New York,
USA: ACM Press. https://doi.org/10.1145/2839509.2844556

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., & Zander, C. (2008). Debugging:
finding, fixing and flailing, a multi-institutional study of novice debuggers. Computer Science Education, 18(2),
93–116. https://doi.org/10.1080/08993400802114508

Gal-ezer, J., & Stephenson, C. (2014). A tale of two countries: Successes and challenges in K-12 computer science
education in Israel and the United States. ACM Transactions on Computing Education, 14(2), 8:1-8:18.
https://doi.org/10.1145/2602483

Gerdes, A., Heeren, B., Jeuring, J., & van Binsbergen, L. T. (2017). Ask-Elle: An adaptable programming tutor for
haskell giving automated feedback. International Journal of Artificial Intelligence in Education, 27(1), 65–100.
https://doi.org/10.1007/s40593-015-0080-x

Gonzalez, M. J., & González-Ruiz, I. (2017). Behavioural intention and pre-service mathematics teachers’
technological pedagogical content knowledge. EURASIA Journal of Mathematics, Science and Technology
Education, 13(3), 601–620. https://doi.org/10.12973/eurasia.2017.00635a

Graham, C. R. (2011). Theoretical considerations for understanding technological pedagogical content knowledge
(TPACK). Computers & Education, 57(3), 1953–1960. https://doi.org/10.1016/j.compedu.2011.04.010

Guo, P. J. (2013). Online python tutor: Embeddable web-based program visualization for CS education. SIGCSE
2013 - Proceedings of the 44th ACM Technical Symposium on Computer Science Education, 579–584.
https://doi.org/10.1145/2445196.2445368

Guzdial, M. (2015). Learner-centered design of computing education: Research on computing for everyone.
Synthesis Lectures on Human-Centered Informatics, 8(6), 1–165. https://doi.org/10.2200/
S00684ED1V01Y201511HCI033

Guzdial, M. (2016). Bringing computer science to U.S. schools, state by state. Communications of the ACM, 59(5), 24–
25. https://doi.org/10.1145/2898963

Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge : Conceptualizing and
measuring teachers’ topic-specific knowledge of students. Journal for Research in Mathematics Education, 39(4),
372–400.

Hubwieser, P., Magenheim, J., Mühling, A., & Ruf, A. (2013). Towards a conceptualization of pedagogical content
knowledge for computer science. Proceedings of the Ninth Annual International ACM Conference on International
Computing Education Research - ICER ‘13, 1–8. https://doi.org/10.1145/2493394.2493395

Jang, S. J., & Chen, K. C. (2010). From PCK to TPACK: Developing a transformative model for pre-service science
teachers. Journal of Science Education and Technology, 19(6), 553–564. https://doi.org/10.1007/s10956-010-
9222-y

Jonassen, D. H. (1991). Objectivism versus constructivism: Do we need a new philosophical paradigm? Educational
Technology Research and Development, 39(3), 5–14. https://doi.org/10.1007/BF02296434

Koehler, M. J., & Mishra, P. (2009). What is Technological Pedagogical Content Knowledge (TPACK)? Contemporary
Issues in Technology and Teacher Education, 9(1), 60–70.

Kolikant, Y. B.-D., & Mussai, M. (2008). “So my program doesn’t run!” Definition, origins, and practical expressions
of students’ (mis)conceptions of correctness. Computer Science Education, 18(2), 135–151.
https://doi.org/10.1080/08993400802156400

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the forest for the trees: novice
programmers and the SOLO taxonomy. In Proceedings of the 11th annual SIGCSE conference on Innovation and
technology in computer science education - ITICSE ‘06 (Vol. 38, pp. 118–122). New York, New York, USA: ACM
Press. https://doi.org/10.1145/1140124.1140157

https://doi.org/10.1016/j.compedu.2012.09.004
https://doi.org/10.1111/j.2044-8317.1992.tb00992.x
https://doi.org/10.1145/1163405.1163409
https://doi.org/10.1145/2839509.2844556
https://doi.org/10.1080/08993400802114508
https://doi.org/10.1145/2602483
https://doi.org/10.1007/s40593-015-0080-x
https://doi.org/10.12973/eurasia.2017.00635a
https://doi.org/10.1016/j.compedu.2011.04.010
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.2200/S00684ED1V01Y201511HCI033
https://doi.org/10.2200/S00684ED1V01Y201511HCI033
https://doi.org/10.1145/2898963
https://doi.org/10.1145/2493394.2493395
https://doi.org/10.1007/s10956-010-9222-y
https://doi.org/10.1007/s10956-010-9222-y
https://doi.org/10.1007/BF02296434
https://doi.org/10.1080/08993400802156400
https://doi.org/10.1145/1140124.1140157

EURASIA J Math Sci and Tech Ed

13 / 13

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2011). Investigating and improving the models of programming
concepts held by novice programmers. Computer Science Education, 21(1), 57–80.
https://doi.org/10.1080/08993408.2011.554722

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., & Zander, C. (2008). Debugging:
a review of the literature from an educational perspective. Computer Science Education, 18(2), 67–92.
https://doi.org/10.1080/08993400802114581

Miller, C. S. (2014). Metonymy and reference-point errors in novice programming. Computer Science Education, 24(2–
3), 123–152. https://doi.org/10.1080/08993408.2014.952500

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher
knowledge. Teachers College Record.

Qian, Y., & Lehman, J. (2017). Students’ misconceptions and other difficulties in introductory programming: A
literature review. ACM Transactions on Computing Education, 18(1), 1:1-1:24.
https://doi.org/10.1145/3077618

Qian, Y., & Lehman, J. D. (2016). Correlates of success in introductory programming: A study with middle school
students. Journal of Education and Learning, 5(2), 73–83. https://doi.org/10.5539/jel.v5n2p73

Ragonis, N., & Ben-Ari, M. (2005). A long-term investigation of the comprehension of OOP concepts by novices.
Computer Science Education, 15(3), 203–221. https://doi.org/10.1080/08993400500224310

Rivers, K., & Koedinger, K. R. (2017). Data-driven hint generation in vast solution spaces: A self-improving Python
programming tutor. International Journal of Artificial Intelligence in Education, 27(1), 37–64.
https://doi.org/10.1007/s40593-015-0070-z

Sadler, P. M., Sonnert, G., Coyle, H. P., Cook-Smith, N., & Miller, J. L. (2013). The influence of teachers’ knowledge
on student learning in middle school physical science classrooms. American Educational Research Journal,
50(5), 1020–1049. https://doi.org/10.3102/0002831213477680

Saeli, M., Perrenet, J., Jochems, W. M. G., & Zwaneveld, B. (2011). Teaching programming in secondary school: A
pedagogical content knowledge perspective. Informatics in Education, 10(1), 73–88. Retrieved from
https://search.proquest.com/docview/864687645?accountid=13360

Schmidt, D. A., Baran, E., Thompson, A. D., Mishra, P., Koehler, M. J., & Shin, T. S. (2009). Technological
pedagogical content knowledge (TPACK): The development and validation of an assessment instrument for
preservice teachers. Journal of Research on Technology in Education, 42(2), 123–149.
https://doi.org/10.1080/15391523.2009.10782544

Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.
Shulman, L. (1987). Knowledge and teaching: Foundation of the new reform. Harvard Educational Review, 57(1), 1–

21.
Smith, J. P., diSessa, A. A., & Roschelle, J. (1994). Misconceptions reconceived: A constructivist analysis of

knowledge in transition. Journal of the Learning Sciences, 3(2), 115–163. https://doi.org/10.1207/
s15327809jls0302_1

Sorva, J. (2013). Notional machines and introductory programming education. ACM Transactions on Computing
Education, 13(2), 1–31. https://doi.org/10.1145/2483710.2483713

Sorva, J., Karavirta, V., & Malmi, L. (2013). A review of generic program visualization systems for introductory
programming education. ACM Transactions on Computing Education, 13(4), 1–64.
https://doi.org/10.1145/2490822

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285.
https://doi.org/10.1016/0364-0213(88)90023-7

Taber, K. S. (2013). Modeling learners and learning in science education. New York: Springer.
Taber, K. S. (2014). Alternative Conceptions/Frameworks/Misconceptions. In R. Gunstone (Ed.), Encyclopedia of

Sci. Education (pp. 1–5). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-6165-0_88-2
Webb, M., Davis, N., Bell, T., Katz, Y., Reynolds, N., Chambers, D. P., & Sysło, M. M. (2017). Computer science in

K-12 school curricula of the 2lst century: Why, what and when? Education and Information Technologies, 22(2),
445–468. https://doi.org/10.1007/s10639-016-9493-x

Yadav, A., Berges, M., Sands, P., & Good, J. (2016). Measuring computer science pedagogical content knowledge:
An exploratory analysis of teaching vignettes to measure teacher knowledge. Proceedings of the 11th Workshop
in Primary and Secondary Computing Education, (October), 92–95. https://doi.org/10.1145/2978249.2978264

http://www.ejmste.com

https://doi.org/10.1080/08993408.2011.554722
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1080/08993408.2014.952500
https://doi.org/10.1145/3077618
https://doi.org/10.5539/jel.v5n2p73
https://doi.org/10.1080/08993400500224310
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.3102/0002831213477680
https://search.proquest.com/docview/864687645?accountid=13360
https://doi.org/10.1080/15391523.2009.10782544
https://doi.org/10.1207/s15327809jls0302_1
https://doi.org/10.1207/s15327809jls0302_1
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2490822
https://doi.org/10.1016/0364-0213(88)90023-7
https://doi.org/10.1007/978-94-007-6165-0_88-2
https://doi.org/10.1007/s10639-016-9493-x
https://doi.org/10.1145/2978249.2978264

	INTRODUCTION
	STUDENT MISCONCEPTIONS IN INTRODUCTORY PROGRAMMING
	PURPOSE OF THE STUDY
	METHODOLOGY
	Subjects and Research Context
	Data Analysis

	RESULTS
	RQ1: What are Common Misconceptions held by Chinese Middle School Students in Introductory Programming?
	Common compilation errors and underlying misconceptions
	Common non-compilation errors and underlying misconceptions

	RQ2: Are there any Relationships between Students’ Programming Misconceptions and their Math and English Ability?

	DISCUSSION
	Student Misconceptions in Computer Science
	Potential of Technology for Enhancing Computer Science Teachers’ Understanding of Student Misconceptions
	Limitations

	CONCLUSION
	REFERENCES

