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ABSTRACT. It is a well-known fact that the idea of function plays a unifying role in the development of

mathematical concepts. Yet research has shown that many students do not understand it adequately even though they

have experienced a great deal of success in performing a plethora of operations on function, and on using functions

to solve various types of problems. This paper will report about an assessment of the perceptions of Basotho college

mathematics specialists on the notion of function. Four hundred and ninety one (491) mathematics specialists enrolled

at the National University of Lesotho (Years 1 - 4) in the 2002/2003 academic year responded to the questionnaire that

challenged them, amongst other things, to  (a) define a function, (b) give an example of a function, and (b) distinguish

between functional and non-functional situations embedded in a variety of contexts. In addition to the difficulties

observed in their attempt to define a function and to provide an example of a function, results suggests that, for the

majority of those who responded to the questionnaire, the idea of function seemed to be limited to common or

prototypical  linear and quadratic situations that could be expressed either in symbolic or graphical forms.

Additionally, arbitrary correspondences and functional situations that were presented implicitly were not identified as

functions by the majority of the students. This paper discusses instructional, curricular, and research implications of

the findings. 
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INTRODUCTION

The idea of function plays an important role in the development of mathematical
concepts in that it cuts across a range of mathematics content domains including those of algebra
and geometry (National Council of Teachers of Mathematics (NCTM), 2000). However, research
on students' understanding functions (e.g. Tall, 1996; Markovits et al. 1988) has shown that it is
one of the least understood topics. A common definition of function is that of a correspondence
that associates with each element in the first set a unique element in the second set.  Some of the
research (e.g. Vinner, 1992, Clement, 2001) has examined the extent to which one's concept
image of function is consistent with the modern mathematical definition of function. According
to Vinner, a person's concept image consists of all the mental pictures and perceptions that he or
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she constructs as a result of having interacted with the concept over an extended period.
Research on the relationship between one concept image and definition has revealed some
serious discrepancies. For instance, Clement (2001) observes that documented students' concept
images of function include (a) tendency to regard a function as something that can be defined in
terms of a simple rule, (b) relation whose graph is continuous, and (c) a relation that is one-to-
one. The foregoing is clearly a very narrow conception of function, given that some functions
can neither be represented in the form of a symbolic rule nor in the form of a graph. Moreover,
some functions are not continuous, and others are onto.

Although most of the research work on students' understanding of function conducted in
English-speaking cultures of the world (e.g. Markovits et al., 1988; Tall, 1996) has accumulated
a useful body of knowledge pertaining to students' difficulties, conceptions, and definitions of
function, little similar work has been done in non-English-speaking cultures of the world such as
that of Lesotho in Southern Africa. Furthermore, to improve students' understanding of function,
there is a need to develop detailed accounts of how they develop increasingly sophisticated ideas
associated with function in an instructional setting. Accordingly, as a preliminary survey
designed to collect baseline information, this study explored Basotho university mathematics
specialists' understanding of function. More specifically, this study sought to explore students'
ability to: (a) define a function, (b) provide an example of function, and (c) distinguish between
functional and non-functional situations presented in symbolic and graphical forms, and (d)
distinguish between functional and non-functional situations that are defined either implicitly or
as arbitrary correspondences. It was hoped that the information thus generated, would, amongst
other things, provide a basis for developing and testing instructional programmes that are
capable of moving students from lower to higher levels of understanding the notion of function.

Theoretical Considerations

This paper is grounded on the assumption mathematical understanding is a complex and
multi-faceted phenomenon. Consistent with this line of thinking, Kaput (1989) identifies two
sources of conceptual understanding in mathematics: (a) referential extension which refers to the
ability to make translations between mathematical representations, and to make translations
between mathematical and non-mathematical situations, and (b) consolidation which refers to
the ability to operate within a system, recognizing the pattern and syntax of the system, and
building conceptual entities via reifying actions and procedures. In unpacking referential
extension in the context of the function concept, O'Callaghan (1998) identifies and describes
three essential components of understanding functions: (a) modeling, (b) interpreting, and (c)
translating. Whereas modeling entails ability to represent a mathematical situation using a
picture, symbol, graph or table, interpreting involves ability to draw conclusions about functions
from different representations. Finally, reifying entails construction of a mental object of the idea
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of function from what was essentially seen as a process or procedure. In the case of functions,
process or procedure refers to various operations with functions such as drawing graphs,
differentiating functions, and doing analysis of functions.  Accordingly, the tasks used in
investigating Basotho university mathematics students' understanding of function sought to
evoke responses that would reveal these various aspects of understanding the concept of
function. The researcher's hypothesis was that given that most of these college mathematics
specialists who took part in this study had, on average, attained a reasonable degree of
proficiency in performing such operations as differentiation, integration and the proof of the
continuity of function, they would be equally successful in understanding the object they have
demonstrated so much success in manipulating it. 

Significance of the Study

In the only study that investigated Basotho students' understanding of function, Morobe
(2000) worked with a small sample of pre-service mathematics teachers (12) at the National
University of Lesotho (NUL) during the 1999/2000 academic year. The results of this study
suggested, amongst other things, that the teachers held a pervasive belief that every function was
linear. Additionally, they struggled somewhat in dealing with the less common functions such as
piece-wise functions, constant functions, and discontinuous functions. The present study was
designed to extend Morobe' work by looking at a much bigger sample of 491 mathematics
specialists enrolled at the NUL in the 2002/2003 academic year. This group included prospective
teachers of mathematics and those who were taking mathematics as one of their two majors.
Whereas Morobe used the tasks that could easily be represented either in a symbolic, graphical
or tabular forms, the current study included arbitrary correspondences and implicitly defined
functional situations that could not necessarily be represented in the form of a table, symbol, or
graph. More specifically, the tasks used in this study included the following representations of
function (a) symbolic forms of functions, (b) graphical representations of functions, (c) arbitrary
correspondences, and (d) a functional situation that was described implicitly. It is hoped that the
results of this study should constitute a basis for thinking about possible intervention strategies
designed to improve students' understanding of function at tertiary institutions. Accordingly,
research that builds on the current study might include the design of teaching experiments that
are aimed at documenting students' development of the function concept in instructional settings.
These ideas, when documented, can constitute a basis for developing instructional materials and
activities that support or nurture the development of students' development of a richer
understanding of function.
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METHODOLOGY

Sample 

Mathematics students enrolled at the National University of Lesotho during the
2003/2004 academic year constituted the population of the present study.  Four hundred and
ninety-one (491) of these students responded to a 10-item questionnaire that challenged them to
define function, give an example of a function and to distinguish between functional and non-
functional situations presented different representations and contexts. Table 1 show the number
of students who participated in this study.  This sample included some 93 social sciences students
who took a second year mathematics course as a service course (M205 group). Drawn from years
one through four of the degree program, the students responded to the questionnaire during
regular classroom time. All students who participated in this study had undergone some formal
training on the formal definition, recognition, and interpretation of functions.

Table 1. Number of College Mathematics Specialists who Took Part in the Survey

Instrumentation

The instrument used in this paper was designed in such a way that it would evoke
responses that would reveal participants' concept image of function. The idea was to access their
concept image by asking them to (a) define function, (b) provide an example of function, (c)
identify functional and non-functional situations presented in the form of graph, table, or
symbols, and (d) recognize a function presented in an implicit form. Adapted from Clement
(2001), some of the tasks in the questionnaire required students to respond to 10 items. The first
5 of these covered the demographic characteristics of the participants. The sixth item required
students to define the mathematical concept of function, and to provide an example of a function.
The seventh item required students to recognize and identify functions presented in a graphical
form. The eighth item asked the students to identify functions presented in a symbolic form. The
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Category of Students Number of Registered
Students

Number & Percentage of Students
Responding to Questionnaire

Number  [%]

1st Year  (Math) 267 250          [94%]

2nd Year  (Math) 119 105          [88%]

2nd Year Soc. Sciences (Math) 101 93            [92%]

3rd Year (Math) 26 23            [88%]

4th Year (Math) 26 20            [77%]



ninth item challenged the students to decide whether an arbitrary correspondence presented in a
tabular form (Figure 1) was a function. The last item (Figure 2) sought to determine whether the
students could recognize a functional situation that was defined implicitly, and embedded in a
context that was neither a graph, table, or symbols. In each case the students were given enough
space to justify their responses in writing.

If we let x = club member's name and y = amount owed, is y a function of x?

Figure 1. The task showing an arbitrary correspondence. 

From "What do students really know about functions? By L. Clement (2001), Mathematics Teacher, 94, 9, p. 746.

Copyright by L. Clement, Reprinted with permission.

A caterpillar is crawling around on a piece of paper as shown below. 

a) If we wished to determine the creatures' location on the paper with respect to time, would this location be a function
of time? Why or why not?
b) Can time be described as a function of its location? Explain.

Figure 2. The task showing a functional situation defined implicitly. 

From "What do students really know about functions?" By  L. Clement (2001), Mathematics Teacher, 94, 9, p. 746.
Copyright By L. Clement. Reprinted with permission

Procedure

The students responded to the questionnaire during regular instruction time.  Prior to
asking the students to respond to the questionnaire, the researcher explained that the purpose of
the exercise was to study their understanding of the idea of function. Furthermore, the students
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Name Owed Name Owed

Sue $17 Iris 6

John 6 Eve 12

Sam 27 Henry 14

Ellen 0 Louis 6



were made aware that the questionnaire had nothing to do with regular testing. Finally, the
researcher made sure that the students understood what each task required them to do by going
through each item in the questionnaire. Completed questionnaires were collected immediately
after the students had completed them. In other words, the students were not allowed to take the
questionnaire home.

Data Analysis 

On the basis of the researchers' own mathematical understanding of function, and on the
research questions the researchers sought to pursue, students' thinking was analyzed according
to five general themes: (a) definition and examples of function, (b) ability to recognize functions
expressed in symbolic form, (c) ability to recognize functions presented in a graphical form, (d)
ability to identify a function expressed in a tabular form but without an explicit rule linking
elements of the domain and those of the range, and (e) facility at seeing and dealing with
functions presented in an implicit form. Finally, a double-coding procedure (Miles & Huberman,
1994) was used to identify and categorize students' responses to each item. The researcher and
another person trained to do the job independently read and coded 100 randomly sampled
responses to each item.  Agreement was reached on 95% of the selected cases. Disagreements
were discussed until consensus was reached.

RESULTS

Students' Definitions of Function

The overall picture was that the majority of students were unable to provide a correct
definition of function. Table 2 summarizes students' definitions of functions. Students from
various levels of education seemed to differ in terms of the way they chose to define function.
Whereas the majority of first year students [137 (55%)] defined function as a relationship that
has only one image in the co-domain (range), their second year counterparts [58 (55%)] defined
a function as a relationship in which the first component of the ordered pair is not repeated. The
difference between the two definitions is that the latter uses ordered pairs. However, they both
stress the fact that every element of the domain has exactly one image (univalence property of
function). In other words, one-to-one and many-to-one relations are functional, but one-to-many
relations are not functional. The majority of students in the social sciences category (those taking
M205) [63 (68%)] provided a definition that seemed to emphasize the dependency property of
function, with scant regard for the need for a functional situation not to have one-to-many
correspondences. More specifically, they defined a function as a rule that shows how one
variable depends on the other. Finally, students in the third and forth years of study tended to
defined a function as a relation in which there is only one image in the co-domain in the same
way as their first year counterparts. 
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The correct formal definition of function based on the idea of set of ordered pairs did
emerge only on less than five instances. For example, Tefo in the second year of study defined a
function as a "the cross product of two sets such that the first component in the ordered pair is
not repeated". Some definitions stressed the fact that in a functional situation, one can have one-
to-one and many-to-one situations, but not one-to-many situations. Others clearly reflected the
many misconceptions that the students held with regard to function. For instance, Mpho in her
forth year of study argued that a function was a "mathematical equation that has a domain and
range whereby the domain is mapped to the range on a 1-1 bases. Firstly, Mpho's claim that a
function is an equation underscores a possible confusion between the idea of a function as a very
large abstract object and an equation a one way of modeling or representing only a limited
number of functions. Secondly, her claim that the domain is mapped onto the range on a 1-1 basis
mirrors a possible confusion between the univalence property of a function and the one-to-one
property of some functions, with scant regard for the fact others are in fact onto. On several
occasions, respondents described a function as a relation in which an input is turned into an
output, showing lack of understanding of the idea of function as a special type of a relation in
which each input (if we use their language) corresponds to exactly one output. It is interesting to
note that less than 50% of third and forth year students dared to define a function. This suggests
that their confidence with the idea of function was so low that they chose not to commit
themselves.

Table 2.Definitions of Functions Given by College Mathematics Specialists [Number (%)] 

47

1 Similar concerns have been raised by a number of science graduates as well. Some examples are "materials are not
available…no space to store materials, models and charts…" (personal notes)
2 Time is constraint…I had to achieve all the objectives…I could not… reading process for the students is
problem…discussion in some things becomes long…and planning could not be completed on time… (Immediately
after lesson self-reflection Saira September 27, 2000)
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Students' Definitions of Function
1st Year
N=267

2nd Year
N=119

S0c. Sciences
2nd Year
N=101

3rd Year
N=26

4th Year
N=26

Total
N=491

A function has only one image in the co-domain 137[55] 21[20] 2[2] 6[26] 6[30] 172[35]

A function shows how one variable depends on the
other 0[0] 6[2] 63[68] 5[22] 5[25] 79[17]

First entry of ordered pair does not correspond to
more than one second entry 0[0] 58[55] 0[0] 0[0] 0[0] 58[12]

A function is relation between variables x and y 29[12] 6[6] 12[13] 0[0] 0[0] 47[10]

A function has one image but an image can have
more than one partner 10[4] 1[1] 0[0] 0[0] 0[0] 11[2]

In a function an input mapped on to an output 14[6] 0[0] 0[0] 3[13] 2[10] 19[4]

No definition 20[8] 11[10] 8[3] 0[0] 0[0] 39[8]

Numbers and letters to represent given information 0[0] 0[0] 4[4] 0[0] 0[0] 4[1]

One-to-one and onto mapping with domain and range 0[0] 1[1] 0[0] 3[13] 4[20] 8[1]

Subset of cross product of 2 sets such that first entry
in the ordered pair is not repeated 0[0] 2[2] 2[2] 0[0] 0[0] 4[1]

Idiosyncratic definitions 36[14] 2[2] 4[4] 3[13] 3[13] 48[10]



Table 2.Definitions of Functions Given by College Mathematics Specialists [Number (%)]

Students' Examples of Function

As expected, the most salient features of students' understanding of function became
more apparent when they were challenged to provide examples of function. Table 3 summarizes
students' responses when challenged to provide examples of functions. The most common
examples were functions that were either linear or quadratic. Others were an arrow diagram,
series of ordered pairs, and polynomial functions, especially quadratic functions. This finding is
not surprising given most of the examples used in the teaching and learning of algebra in the
Lesotho context are either linear or quadratic. These examples suggest that the concept image of
function that the students held was that or a relationship that could easily be described in terms
of well-known functions such as those that were linear or polynomial.  Surprisingly, a large
number of third year [13 (50%)] and forth year [11(42%)] mathematics specialists could not
provide an example of a function. This was despite the fact that these students had developed a
sufficient facility at manipulating functions as evidenced by the fact that they had successfully
completed the program for year 1 through 3 of university mathematics. In particular, they had
differentiated functions, integrated functions, analyzed functions, and used functions as a basis
for solving a wide spectrum of mathematical problems. 

Students’ Examples of

Function

Year 1

N= 267

Year 2

N=119

Social Sciences
Year 2
N=101

Year 3

N=26

Year 4

N=26

Total

N=491

Linear or quadratic functions 109[40.8] 36[30.3] 62[61.4] 10[38.5] 11[42.3] 228[46]

Arrow diagram 81[32] 6[6] 0[0] 0[0] 0[0] 87[18]

Exponential function 0[0] 0[0] 5[5] 0[0] 0[0] 0[0]

Students & ages, non can have

more than one age
14[6] 3[3] 6[6] 0[0] 0[0] 23[5]

F(x) = [(1,5), (2,6), (2,7)] 15[6] 42[40] 0[0] 0[0] 0[0] 57[12]

F (x) = f (l, k) 0 [0] 0[0] 7[8] 0[0] 0[0] 7[1]

Other examples 0[0] 5[5] 0(0) 0[0] 0[0] 5[1]

No example given 42[17] 21[20] 14[15] 13[50] 11[42] 101[21]
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Table 3. Examples of Functions by Given by College Mathematics Specialists [Number (%)]

Recognition of Symbolic Representations of Function  

The conjecture that the students were more likely to recognize functions in situations
that could easily be represented using familiar symbolic representations, especially those that
were linear and quadratic, was further supported by their responses to a task that challenged them
to identify symbolic representations of relations that were functional. Table 4 summarizes
students' choices of symbolic representations of relations that they regarded as functional. As
shown on Table 4 about 471 (96%) of students who participated in this study correctly identified 

the linear function                as representing a functional situation. Similarly, 461 (94%) students 

correctly identified the quadratic function y = x 2 - 4 as representing a functional situation.
Additionally, with the exception of first year students, the exponential function ( y = e x ) was
correctly identified as a function by all categories of students who took part in the investigation.
Apparently the majority of the students had met linear, quadratic, and exponential relations
identified and discussed as models of functional situations. In contrast, the numbers dropped 

sharply in the case of the less common relations such as the piece-wise function              

Students’ Examples of Function
Year 1

N= 267

Year 2

N=119

Social Sciences 

Year 2

N=101

Year 3

N=26

Year 4

N=26

Total

N=491

Linear or quadratic functions 109[40.8] 36[30.3] 62[61.4] 10[38.5] 11[42.3] 228[46]

Arrow diagram 81[32] 6[6] 0[0] 0[0] 0[0] 87[18]

Exponential function 0[0] 0[0] 5[5] 0[0] 0[0] 0[0]

Students & ages, non can have more

than one age
14[6] 3[3] 6[6] 0[0] 0[0] 23[5]

F(x) = [(1,5), (2,6), (2,7)] 15[6] 42[40] 0[0] 0[0] 0[0] 57[12]

F (x) = f (l, k) 0 [0] 0[0] 7[8] 0[0] 0[0] 7[1]

Other examples 0[0] 5[5] 0(0) 0[0] 0[0] 5[1]

No example given 42[17] 21[20] 14[15] 13[50] 11[42] 101[21]
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[233(47%)] and the rational function  x y = 8 [209 (43%)]. As expected, the number of students

who claimed that  x2 + y2 = 25 was a function was relatively low [191 (39%)]), suggesting that

the majority of the students correctly identified this circle of center (0, 0) and radius 5 units did

as a non-functional situation.  Perhaps the students experienced more success at classifying this

because they could easily visualize it as a circle, and they recalled that a circle would always fail

the vertical line test for a function. In contrast, the rational function (c) and the piece-wise

functions (f) were probably more difficult to visualize.

Table 4. Symbolic Relations Identified by College Mathematics Students as Functions [Number (%)]

Table 4 further shows that the piece-wise function (f) seemed to have caused greater
difficulties to students in the third year compared to those in the fourth year. It was also
interesting to note that second year students in the social sciences experienced more success in
identifying the exponential relation as a function compared to their counterparts in the pure
sciences. Perhaps this results from the fact that the exponential function is often used in a wide
spectrum of applications in the social sciences, and accordingly it is one of the few functional
representations that the students had met several times.

Recognition of Graphical Representations of Functions

Here the researcher's conjecture was that the students were more likely to experience
more success at identifying functions presented in a graphical form compared to those presented
in the symbolic form given that graphical representations landed themselves more readily to
analysis using such learning tools as the vertical line test for a function. Table 5 summarizes
students' responses when challenged to identify functions from a group of relations presented in

Relations
Year 1

N =267

Year 2

N = 119

Social Sciences 

Year 2

N = 101

Year 3

N = 26

Year 4

N = 26

Total

N=491

(a) y = x 2 - 4 207[78] 109[92] 98[97] 24[92] 23[88] 461[94]

(b) 211[79] 110[92] 98[97] 26[100] 26[100] 471[96]

(c) x y = 8 46[17] 78[66] 43[43] 18[69] 24[92] 209[43]

(d) x2 + y2 = 25 95[36] 26[22] 45[45] 11[42] 14[54] 191[39]

(e) y = e x 146[55] 98[82] 99[98] 24[92] 25[96] 392[80]

(f) 76[28] 74[62] 55[54] 10[38] 18[69] 233[47]

50 Polaki



 ∈

otherwise 1-
rationals  x if 1

2
xy =



a graphical form. Indeed, the majority of students (471[96%]) across the five groups were able
to see that a graph that represented a relation of the form y = a x 2 represented a functional
situation. As expected, a large number of participants (430[88%]) correctly identified a semi-
circle that had center (0, 0) and covered the first and second quadrants (e) as representing a
functional relationship. Contrary to expectations, however, the number of students who correctly
classified a constant function ( y = b ) was generally low, especially amongst students in the social
sciences. Interestingly, first year students did better in this exercise compared to every category
of the students except those in the third year.  Furthermore, graphs of the singleton point (c) and
the step function (g) seemed to cause a lot of difficulties across the categories of the students who
participated in this investigation. Whereas first year students outperformed every category of
participants in classifying a singleton point as function, only third year students did better than
them in classifying the step function as representing a functional situation. In fact only 251
(51%) of all students correctly identified this as a function. As for the step function (g), only first
year students (201[75%]) and fourth year students (21[81%]) seemed to experience considerable
success at recognizing this as representing a functional relationship. The foregoing were made in
spite of the fact that the vertical line test could easily have been used as basis for reaching the
correct conclusion that both the singleton point and the step function represented functional
relationships.

Table 5.Graphs of Relations Identified by College Mathematics Students as Functions [Number (%)]

Graphs of Relations
Year 1

N =267

Year 2

N= 119

Social Sciences 

Year 2 

N = 101

Year 3

N = 26

Year 4

N = 26

Total

N=491

(a) Parabola of the form y = a x 2 220(82) 106(89) 97(96) 24(92) 24(92) 471[96]

(b) Relation of the type x = a y 2 62(23) 60(50) 73(72) 11(42) 14(54) 220[45]

(c) Singleton point 165(62) 44(40) 23(23) 10(38) 9(35) 251[51]

(d)  Function of the form y = b , where is b is

a constant
194(73) 75(63) 35(35) 11(42) 21(81) 336[68]

(e) Semi-circle with center (0,0), covering 1st

and 2nd quadrants
208(78) 88(74) 90(89) 23(88) 21(81) 430[88]

(f) Semi-circle with center (0,0), covering the

1st and 4th quadrants
50(19) 41(34) 69(68) 12(46) 15(58) 187[38]

(g) Step function 201(75) 49(41) 36(36) 11(42) 21(81) 318[65]
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distance between the centre and circumference. 
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As for identifying non-functional situations, results suggest that only 220 (45%)
incorrectly identified a relation of the form x = a y 2 as a function. In other words 55% of the
students correctly figured out that this did not represent a function. In this case first year students
apparently experienced more success at classifying this relation as evidenced by the low the
number of those who claimed this was a function. Similarly, only 187 students incorrectly
identified a semi-circle covering the first and 4th quadrants as representing a function, which
means that 62% correctly noted that this semi-circle did not represent a function. Once again
more first year students correctly identified this as not representing a functional situation
compared to students in the second, third and fourth years of study. In this case the researcher's
conjecture that the students would experience greater success at classifying relations represented
in a graphical form compared to those represented in a symbolic form was not supported. On the
contrary, the students seemed to classify graphical representations of relations rather differently,
showing greater facility with those they had apparently met before.

Recognition of an Arbitrary Correspondence as a Functional Situation 

In order to explore students' ability to decide whether a functional relationship presented
as an arbitrary correspondence was indeed a function, the students were confronted with an item
showing the status of club members' dues (Clements, 2001) (see Figure 1). They were then told
that x equals club member's name and y equals amount owed. They were then challenged to
decide whether y was a function of x, and to justify their decision. This situation was an arbitrary
correspondence in the sense that there was no specific rule that seemed to associate a club
member' name to the amount owed as in the case of other forms of functions. In addition, this
relationship could neither be presented in a symbolic or graphical form in the same way that one
could represent linear, polynomial or exponential function. Although the majority of participants
did not provide responses, the item shown in Figure 1 was able to generate a range of responses
that revealed some interesting aspects of students' thinking about the idea of function.  Table 6
summarizes students' responses to this item.  It must be noted that compared to item 7 (graphical
representations of functions) and 8 (symbolic representations of functions), this item was a bit
unusual in the sense that the students had not met similar problems in their day-to-day
mathematics lessons. Furthermore, it caused a lot of conceptual challenges as evidenced by the
low number of students who were able to respond to it.
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Table 6. College Mathematics Students' Analyses of an Arbitrary Correspondence [Number (%)]

The most common incorrect response across the four groups (183[37%]) was that the
task shown in (Figure 1) represented a function because, as Thabang argued, "The amount owed
was owed to one member". This response was indeed incorrect for, as shown on Figure 1, John
and Iris actually owe the same amount. Furthermore, 49(10%) students argued that item 9 did
not represent a function because 2 members owed the same amount. As Molete explained it,
"This is not a function because Iris, Louis, and John owe the same amount and this means we
have more than one image." Other students justified similar responses by drawing an arrow
diagram that showed amount owed (y) as constituting the domain (corresponds to objects) and
club member's names (x) as co-domain (corresponds to image). It should be noted that, in this
case, an arrow diagram was used as basis for reaching an incorrect decision. The foregoing
perceptions could have resulted from a misunderstanding of the phrase "y is a function of x".
Whereas a correct interpretation of "y is a function of x" is that y depends on x, an incorrect
interpretation that surfaced in this case was that "y is a function of x" means x depends on y. 

Furthermore, students' responses to this item also suggest that, because their concept
image of function was that of a relation that could be expressed using either a formula or graph,
they had difficulty in recognizing and accepting a functional relationship that was not be
expressed in any of the usual representations. Common incorrect responses included expressing
discomfort with the fact that there seemed to be no explicit relationship between a club member's
name and the amount owed. For example, Matseliso argued a similar point thus: "No, y is not a
function of x. There is no way the member's name and amount owed are related". Clearly,
Matseliso is perturbed by the fact that there is no explicit relationship between a member's name

Students’ Analyses of an Arbitrary

Correspondence

Year 1

N =267

Year II

N = 119

Social Sciences 

Students

N =101

Year 3

N = 26

Year 4

N = 26

Total

N= 491

Yes! Amount is owed to one
member

118(47) 22(21) 36(39) 7(30) 0(0) 183[37]

No! Y does not depend on x 0(0) 5(5) 28(30) 3(13) 2(10) 38[8]

Yes! Amount reflects character of
club member

0(0) 0(0) 6(6) 0(0) 0(0) 6 [1]

Yes! No explanation 31(12) 30(29) 0(0) 2(9) 4(20) 67[14]

No! No explanation 7(3) 22(21) 0(0) 2(9) 11(55) 42[9]

No! Different names have same
amount

32(13) 11(11) 0(0) 6(26) 0(0) 49[10]

Yes! After drawing an arrow
diagram

9(4) 0(0) 0(0) 0(0) 0(0) 9[2]

Other Responses 6(2) 2(0) 14(15) 0(0) 0(0) 22[4]

No Response 42(17) 17(16) 9(10) 3(13) 3(15) 74[15]
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and the amount owed. Other students seemed to express a similar sentiment, but were more
forthright about what they objected to compared to Matseliso. For instance, Thabo said Figure 1
did not represent a functional relationship for as he explained it, "Club member's names are not
represented by digits". Consistent with this type of thinking, Lineo said: "Y is not a function of
x because the member's name does not depend on the amount owed. We cannot construct an
equation that relates y to x". Thus these students were not inclined to accept an arbitrary
correspondence as a function. More specifically, they seemed to be looking a numerical
relationship that could easily be represented symbolically. Apparently, their experiences with
functions had excluded arbitrary correspondences that could be functional or non-functional.
More importantly, they were not aware that symbols and graphs are merely models or
representations of abstract objects called functions, and that some of these objects can neither be
represented graphically nor symbolically.

As in the case of graphical representations of functions, traces of correct classification
of the relation shown in Figure 1 as functional seemed to emerge from the first year category of
participants. Correct responses included mentioning the fact that one member owed one amount.
As shown in Table 6, some 9 (4%) first year students drew an arrow diagram, the first column
of which showed names of club members (x) and the second column of which depicted the
amounts owed (y) before reaching the valid conclusion that Figure 1 represented a functional
relationship. Apparently, the arrow diagram did enable the students to recognize that whereas the
relation consisted of one-to-one and many-to-one correspondences, one-to-many
correspondences did not exist. In other words, they did realize that the situation shown in Figure
1 did satisfy the univalence property of function. Thus the arrow diagram was correctly used in
this case as a tool of analysis that enabled the students to decide whether the arbitrary
correspondence described in Figure 1 indeed represented a functional relationship. It should be
noted that the students could, for the task shown in Figure 1, easily landed itself to analysis using
an arrow diagram. The researcher further sought to find out how the students would deal with a
functional situation that could neither be represented using a symbol, graph or arrow diagram. 

Recognition of a Function Defined Implicitly

In the last item adapted from Clements (2001), the students were shown the picture of a
crawling caterpillar that first moved forward (not in a straight line) for a few minutes and then
turned around before continuing for a few minutes (see Figure 2).  Then the creature turned
around again before continuing.  Thus the path of the caterpillar consisted of several loops.  The
students were asked to say whether location would be a function of time if one wished to
determine the caterpillar's location on paper at a particular time.  Table 7 summarizes students'
responses to item 10.
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Table 7. College Mathematics Responses to the Item on the Caterpillar Moving in Loops [Number (%)]

The task on the crawling caterpillar confronted the students with a lot of difficulties as
evidenced by the low number of those who provided responses. The most common incorrect
response was that location would not be a function of time because the creature seemed to have
been at the same place at the same time. Thabiso echoed a similar sentiment in arguing as
follows: "This is not a function because as we look at our time, the creature crosses twice at a
certain point of time. This means that a certain distance has different time intervals which do not
agree with the function rule of having only one image for each object". Once again the confusion
here seems to reside in students' lack of understanding of the question:" Would location be a
function of time?" More specifically, they were apparently unable to identify the dependent and
the independent variable. In the foregoing question location is the dependent variable and time
is the independent variable. Although different times can correspond to one location, each time
will have exactly one location. Therefore location is indeed a function of time since the
univalence of property of function is satisfied. Apparently those who reasoned like Thabiso took
location as the independent variable and time as the dependent variable.

Another common misconception was the tendency to regard the path of a crawling
caterpillar as a model or graph of the relationship between location and time. Consequently,
some students erroneously applied the vertical line test to reach the incorrect conclusion that
location was not a function of time. For example Tumo argued that location was not a function
of time for as he explained it, "The vertical line cuts the graph twice at the same points". This
response not only reflects a mechanical understanding of the use of the vertical line test as a tool
for testing whether a relationship was functional but it also mirrors failure to identify related

Students’ Response
Year 1

N=267

Year 2

N=119

Social science

Year 2 

N=101

Year 3

N=26

Year 4

N=26

Total

N=491

(a) Yes! Location would be a function of time
because location depends on time, and time
keeps on changing.

49(20) 41(39) 71(76) 12(52) 6(30) 179[36]

(a) No! Location is not a function of time
because the creature crosses one place more
than once.

106(42) 30(29) 5(5) 8(35) 5(25) 154[31]

(a) No! Location is not a function of time
because the caterpillar keeps on changing speed.

6(2) 0(0) 4(4) 0(0) 1(5) 11[2]

(a) No! Location is not a function of time
because vertical line test fails.

17(2) 3(3) 0(0) 0(0) 1(5) 21[4]

(a) Other responses 13(5) 13(12) 12(13) 5(22) 7(35) 50[10]

(a) No response given 35(14) 19(18) 4(4) 0(0) 0(0) 58[12]

(b) Yes! Time can be a function of location (no
explanation)

23(9) 20(19) 39(42) 0(0) 5(25) 87[18]

(b) No! Time cannot be a function of location
because one location can have different times

31(12) 20(19) 22(24) 12(52) 6(30) 91[19]
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variables and to correctly interpret their behavior. As in the case of an arbitrary correspondence
(Figure 1), these responses also showed lack of understanding of the phrase "is a function of."
For these students, location was mapped onto time, and consistent with this way of looking at
things, the same location would be mapped onto different times, violating the univalence aspect
of the definition of function. 

The most common correct response was that location would indeed be a function of time
because time kept on changing even though, in some occasions, the distance covered did not
change. As Mahlape explained it, "location would be a function of time because the caterpillar
can be at any location at different times.  Meaning that for different locations there can never be
the same time." This explanation suggests that Mahlape has not only correctly identified related
variables but also understand their behavior. Interestingly, students in the social sciences seemed
to experience more success at answering this question correctly [71 (76%)], with first year
students showing the least success. With regard to the second part of the same task where the
students were challenged to say whether time would be a function of location, only 91 (19%) of
all students correctly concluded that time would not be a function of location because one
location would be mapped to more than one reading of time. As in the case of the first part of the
task, a greater proportion of third year students [12(52%)] reached a correct conclusion, and the
smallest proportion of first year students [31 (12%] provided similar responses. 

CONCLUDING REMARKS

The purpose of this exploratory study was to look at Basotho university mathematics
students' understanding of the notion of function. Although the absence of interviews with a
sub-sample of those who responded to the questionnaire calls for caution in drawing conclusions,
students' work as they responded to the questionnaire and justified their responses in writing has
revealed some interesting aspects of their thinking with regard to the idea of function. In
particular, the results suggest that the majority of the students generally had enormous difficulty
in providing a correct definition of the notion of function. The definitions were often incomplete,
with the students mentioning only one aspect of the definition of function. Whereas mathematics
majors tended to stress the univalence aspect of the definition of function, their social sciences
counterparts emphasized the correspondence or dependence aspect of the definition of function
with scant regard for the univalence property of function. The fact that even third and fourth year
mathematics specialists could not provide a correct definition of function when challenged to do
so, suggests that interactions with function as been more operational than structural (Tall, 1996).
That is, they have, amongst other things, successfully evaluated functions, differentiated
functions, integrated functions, and analyzed the continuity of functions without adequately
understanding the nature of the object they have been handling. There is a need therefore to
restructure the university mathematics curriculum so that it provides a balanced combination of
the operational and structural aspects of the idea of function.

56 Polaki



The examples of functions that the students provided seemed to illuminate their concept
image of function. In line with past research in this knowledge domain (e.g. Markovits et.al.
1988; Vinner, 1992), students' concept image of function was limited to a few prototypical
situations, especially linear and polynomial functions. It was found that the majority of the
students provided either linear or quadratic functions as examples of function. Given that most
of the elementary algebra introduced in the secondary and high schools is essentially the study
of linear and polynomial functions, students' examples of functions reflects the depth and breadth
of the algebra they have studied from the high school through to the university. At the university
level, it is possible that professors of mathematics genuinely choose linear and polynomials
functions as easier examples of functions in order to help the students understand this apparently
illusive concept. Consequently, the students end up internalizing linear and polynomial functions
as prototypes of functions. In other words, when challenged to give an example of a function,
concept images that is immediately evoked are that of a linear or quadratic functions. Apparently,
this process continues throughout the fours years of learning mathematics even though college
mathematics should constitute a context for extending and deepening students' understanding of
the idea of function. To remedy this situation, those involved in the teaching and learning of
functions at the school and tertiary levels might use examples and non-examples of function that
deepen and expand rather than limit students' understanding of functions. This can be attained if
the activities that high school and university mathematics students experience do include
exposure to linear, polynomial, exponential, rational, trigonometric, and other types of functional
situations in a technologically-rich learning environment. It is a well-known fact technological
devices such as graphing calculators can enable students to model and visualize complicated
functions that are impossible to sketch by free hand.

Consistent with their choice of examples of function functions, students' ability to
identify functional and non-functional situations from a group of relations presented in symbolic
and graphical forms seemed to be constrained by the breadth and depth of their past experiences
with functions. In other words, their classification of symbolic and graphical representations of
functional and non- functional situations was limited to some prototypes of functions and non-
examples of functions. For example, they experienced little difficulty in correctly identifying
linear and quadratic relations as functions. Consistent with their past learning experiences,
students in the social sciences were the most successful in recognizing that the exponential
function was indeed a function. Additionally, many showed not much difficulty in seeing the
equation of circle with the origin as the center, and radius 5 units did not represent a functional
situation. Surprisingly, many had problems recognizing that the graphs of a singleton point and
that of step function represented functional situations even though they could have easily used
the vertical line test. It is possible that linear and quadratic functions are often used as examples
of functions, and a circle is usually used as a counter-example of a model of a functional
situation. In contrast, the students experienced great difficulties in identifying the piece-wise
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function and the rational relations as functions. Once again mathematics teachers and educators
might do well to ensure that examples and non-examples of functional situations extend beyond
the familiar linear relations, quadratic relations and other models of relations. It is clear that with
the use of traditional pencil and paper, it may not be possible to expose students to as many
examples and non-examples of functions as is necessary.  In most institutions of higher learning,
students do not only learn how to sketch and draw functions, they also employ electronic devices
(e.g. graphing calculators) to draw and to learn about the behavior of some functions for which
it would be impossible to draw or sketch using paper and pencil alone. Morobe (2000) recorded
some positive changes after exposing a small group of prospective teachers of mathematics to a
series of instructional sessions in which the graphing calculator was an essential component.
Greater changes in students' conceptual understanding of functions can be attained if students are
exposed to at least three types of learning experiences: (a) lecture, (b) pencil-and-paper tutorial,
and (c) tutorial using either a computer or graphing calculator as a learning resource.

When challenged to decide whether a table that depicted an arbitrary (Figure 1)
correspondence was a function, the majority of students had great difficulty in providing
responses. Similarly, a very small number of the students responded to the item on the crawling
caterpillar (Figure 2). Apparently, some were perturbed by the fact that there seemed to be no
explicit rule or equation that connected the variables in the table. Others openly expressed their
frustration with the fact one the variables (names of club members) was not represented by
digits. These responses underscore a serious gap in students' understanding of function, namely,
that even arbitrary correspondences can be functional or non-functional situations. Furthermore,
many had apparently not come across a functional situation that was not defined using
conventional forms of representations as described in task on the crawling caterpillar. More
seriously, there exists confusion between the idea of a function and an equation. Whereas a
function is an abstract object, an equation is a model or symbolic that can be used to represent
some but not all functional situations. Similarly, a table and a graph constitute alternative ways
of representing or modeling functional and non-functional situations. Thus it is essential
mathematics teachers and educators to design learning situations that will enable students to
conceptually draw a distinction between a mathematical concept of function and its symbolic,
graphical, and tabular representations. Moreover, it is important to stress the fact that these
representations may not be used to show all existing functions. It is essential that instruction on
functions exposes students to a wide spectrum of functional and non-functional situations,
including arbitrary correspondences (Figure 1) and those that are defined implicitly (Figure2).

There was also some confusion with the use of the phrase "is a function of". In particular,
some students argued that the arbitrary correspondence shown in Figure 1 was not a functional
situation for as they argued, John and Iris owed the same amount (6). For this category of
students, the confusion seemed to reside in meaning of the phrase "y is a function of x".
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Apparently they regarded this to mean that "x depends on y" rather than "y depends on x". This
misconception resurfaced again when students were challenged to respond to the task on the
crawling caterpillar. Some students argued that location would not be a function of time for as
they explained it, "the caterpillar would be at the same location at different times". Clearly, these
students had misinterpreted the phrase, "location is a function of time" to mean time depends on
location rather than location depends on time. Thus students' access to the meaning simple
expressions such as "y is function x" should not be take granted. On the contrary, mathematics
educators and teachers should expend more time to ensure that these are well understood.
Interestingly, some students were able to correctly decide that the arbitrary correspondence
shown in Figure 1 was a functional situation by drawing an arrow diagram that clearly suggested
that the table satisfied the univalence requirement for a function. In this case an arrow diagram
was used as a representational tool that made a functional relationship more apparent. Once
again effort should be made to draw a distraction between an abstract object of function and an
arrow diagram as a model or a representational tool, and that some functions may not be
represented in the form of an arrow diagram. 

As this was an explanatory study, further research in this area might be aimed at
documenting, in greater detail, how students acquire increasingly complex ideas of function in
an instructional setting. Such teaching experiments necessarily have to be preceded by collection
of baseline information by way of a questionnaire coupled with clinical interviews that cover a
wider spectrum of constructs, including the idea of a function as an abstract entity that can be
represented in several ways, arbitrary correspondences, equations, arrow diagrams, tables,
graphs and those defined implicitly. When available, the data generated from these teaching
experiments should not only contribute to theory-building on the development of functional
concepts but it should also serve as a basis for developing appropriate instructional materials,
including books and manuals. More importantly, it should enable curriculum developers to
review the school mathematics curriculum in such a way that the idea of function becomes a
unifying theme. Additionally, the information generated from the teaching experiment should
produce important ideas about how to best design instructional situations that support rather than
limit students' understanding of function.  
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