Abstract
This paper presents research on the argumentation that preservice teachers perform when designing and teaching geometry. Argumentation is associated with speech acts carrying didactical intentions. This research study features of preservice teachers’ argumentation when explaining geometry tasks both to peers, during preparation and discussion of designed activities, and to students in the classroom. This is qualitative research and the results support establishing relationships between the didactical dimension of the didactic-mathematical knowledge model and some characteristics of the argumentation that preservice mathematics teachers exhibit during their planning and teaching.
Keywords
License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Type: Research Article
EURASIA J Math Sci Tech Ed, 2021, Volume 17, Issue 9, Article No: em2002
https://doi.org/10.29333/ejmste/11139
Publication date: 14 Aug 2021
Article Views: 2202
Article Downloads: 1092
Open Access Disclosures References How to cite this articleDisclosure
Declaration of Conflict of Interest: No conflict of interest is declared by author(s).
Data sharing statement: Data supporting the findings and conclusions are available upon request from the corresponding author(s).
References
- Arnaus, R. (1999). La formación del profesorado: Un encuentro comprometido con la complejidad educativa [Teacher training: A meeting committed to educational complexity]. In J. Angulo, J. Barquín, & A. Pérez (Eds.), Desarrollo profesional del docente: Política, investigación y práctica (pp. 599-635). Ediciones Akal.
- Arzarello, F., & Sabena, C. (2011). Semiotic and theoretic control in argumentation and proof activities. Educational Studies in Mathematics, 77(2-3), 189-206. https://doi.org/10.1007/s10649-010-9280-3
- Ayalon, M., & Hershkowitz, R. (2018). Mathematics teachers’ attention to potential classroom situations of argumentation. The Journal of Mathematical Behavior, 49(March 2018), 163-173. https://doi.org/10.1016/j.jmathb.2017.11.010
- Baccaglini-Frank, A., & Mariotti, M. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225-253. https://doi.org/10.1007/s10758-010-9169-3
- Balacheff, N. (1999). Is argumentation an obstacle? Invitation to a debate. International Newsletter on the Teaching and Learning of Mathematical Proof, May/June. http://www.lettredelapreuve.org/OldPreuve/Newsletter/990506Theme/990506ThemeUK.html
- Balacheff, N. (2000). Procesos de prueba en los alumnos de matemáticas [Testing processes in mathematics students]. Una Empresa Docente, Universidad de los Andes.
- Ball, D., Lubienski, S., & Mewborn, D. (2001). Research on teaching mathematics: The unsolved problem of teachers’ mathematical knowledge. In V. Richardson (Ed.), Handbook of Research on Teaching (4th ed., pp. 433-456). American Educational Research Association.
- Ball, D., Thames, M., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
- Bartolini Bussi, M., & Boni, M. (2003). Instruments for semiotic mediation in primary school classrooms. For the Learning of Mathematics, 23(2), 15-22. http://www.jstor.org/stable/40248416
- Bartolini Bussi, M., & Mariotti, M. (2008). Semiotic mediation in the mathematics classroom: Artefacts and signs after a Vygotskian perspective. In L. English, M. Bartolini Bussi, G. Jones, R. Lesh, & D. Tirosh (Eds.), Handbook of International Research in Mathematics Education (2nd revised edition, pp. 746-783). Lawrence Erlbaum.
- Bartolini Bussi, M., Boero, P., Ferri, F., Garuti, R., & Mariotti, M. (2006). Approaching and developing the culture of geometry theorems in school. In P. Boero (Ed.), Theorems in school: From history, epistemology and cognition to classroom practice (pp. 211-217). Rotterdam, Sense Publishers. https://doi.org/10.1163/9789087901691_013
- Boero, P., Douek, N., Morselli, F., & Pedemonte, B. (2010). Argumentation and proof: A contribution to theoretical perspectives and their classroom implementation. Proceeding of the 34th Conference of the International Group for Psychology of Mathematics Education (Vol. 1, pp. 179-205). PME.
- Brown, R. (2017). Using collective argumentation to engage students in a primary mathematics classroom. Mathematics Education Research Journal, 29, 183-199. https://doi.org/10.1007/s13394-017-0198-2
- Campbell, T. G., Boyle, J. D., & King, S. (2020). Proof and argumentation in K-12 mathematics: A review of conceptions, content, and support. International Journal of Mathematical Education in Science and Technology, 51(5), 754-774. https://doi.org/10.1080/0020739X.2019.1626503
- Candela, A. (1991). Argumentación y conocimiento científico escolar [Argumentación y conocimiento científico escolar]. Infancia y aprendizaje, 14(55), 13-28. https://doi.org/10.1080/02103702.1991.10822302
- Castro, W. F., Pino-Fan, L., & Velásquez-Echavarría, H. (2018). A proposal to enhance pre-service teachers noticing. Eurasia Journal of Mathematics, Science & Technology Education, 14(11), em1569. https://doi.org/10.29333/ejmste/92017
- Cervantes-Barraza, J., Cabañas-Sánchez, G., & Reid, D. (2019). Complex Argumentation in elementary school. PNA, 13(4), 221-246. https://doi.org/10.30827/pna.v13i4.8279
- Conner A, Singletary L., Smith R., Wagner, P., & Francisco R. (2014). Identifying kinds of reasoning in collective argumentation. Mathematical Thinking and Learning, 16(3), 181-200. https://doi.org/10.1080/10986065.2014.921131
- Conner, A, Singletary, L., Smith, R., Wagner, P., & Francisco, R. (2014). Teacher support for collective argumentation: A framework for examining how teachers support students’ engagement in mathematical activities. Educational Studies in Mathematics, 86, 401-429. https://doi.org/10.1007/s10649-014-9532-8
- Crespo, C., Farfán, R., & Lezama, M. (2010). Argumentaciones y demostraciones: Una visión de la influencia de los escenarios socioculturales [Arguments and demonstrations: A vision of the influence of sociocultural settings]. Revista Latinoamericana de Investigación en Matemática Educativa, 13(3), 283-306.
- De Villiers, M. (1993). El papel y la función de la demostración en matemáticas [The role and function of proof in mathematics]. Epsilon, 26, 15-29.
- Douek, N., & Scali, E. (2000). About argumentation and conceptualization. In T. Nakahara & M. Koyama (Eds.), Proceeding of the 24th Conference of the International Group for the Psychology of Mathematics Education, Vol. 2, pp. 249-256. Hiroshima, Japan: PME.
- Drijvers, P; Godino, J; Font, V & Trouche, L. (2013). One episode, two lenses A reflective analysis of student learning with computer algebra from instrumental and onto-semiotic perspectives. Educational Studies in Mathematics, 82(1), 23-49. https://doi.org/10.1007/s10649-012-9416-8
- Durand-Guerrier, V., Boero, P., Douek, N., Epp, S. S., & Tanguay, D. (2011). Argumentation and proof in the mathematics classroom. In G. Hanna, & M. de Villiers (Eds.), Proof and proving in mathematics education (New ICMI Study Series, Vol. 15, pp. 349-367). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2129-6_15
- Duschl, R., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38, 39-72. https://doi.org/10.1080/03057260208560187
- Duschl, R., Schweingruber, H.., & Shouse, A. (2007). Taking science to school: Learning and teaching science in grades K–8. National Academies Press.
- Ebby, C. (2000). Learning to teach mathematics differently: The interaction between coursework and fieldwork for pre-service teachers. Journal of Mathematics Teacher Education, 3, 69-97. https://doi.org/10.1023/A:1009969527157
- Eisenhart, M., Borko, H., Underhill, R., Brown, C., Jones, D., & Agard, P. (1993). Conceptual knowledge falls through the cracks: Complexities of learning to teach mathematics for understanding. Journal for Research in Mathematics Education, 24, 8-40. https://doi.org/10.2307/749384
- English, L. (1997). Promoting a problem posing classroom. Teaching Children Mathematics, 4, 172-180. https://doi.org/10.5951/TCM.4.3.0172
- Erduran, S. (2007). Methodological foundations in the study of argumentation in science classrooms. In S. Erduran & M. P. Jimenez-Aleixandre (Eds.), Argumentation in Science Education (pp. 47-70). Springer. https://doi.org/10.1007/978-1-4020-6670-2_3
- Erkek, Ö., & Bostan, M. (2019). Prospective middle school mathematics teachers’ global argumentation structures. International Journal of Science and Mathematics Education, 17, 613-633. https://doi.org/10.1007/s10763-018-9884-0
- Fielding-Wells, J. (2014). Developing argumentation in mathematics: The role of evidence and context (Unpublished doctoral thesis), Queensland University, Melbourne, Australia.
- Font, V., Nanclares, A., & Iván, J. (2003). Fenómenos relacionados con el uso de metáforas en el discurso del profesor: el caso de las gráficas de funciones [Phenomena related to the use of metaphors in the teacher’s discourse: the case of function graphs]. Revista Enseñanza de las Ciencias, 21(3), 405-418. https://doi.org/10.5565/rev/ensciencias.3917
- Franke, M, Webb, N., Chan, A., Ing, M., Freund, D., & Battey, D. (2009). Teacher questioning to elicit students’ mathematical thinking in elementary school classrooms. Journal of Teacher Education, 60(4), 380-392. https://doi.org/10.1177/0022487109339906
- Gabel, M., & Dreyfus, T. (2013). The flow of proof: The example of Euclidean algorithm. In A. Lindmeier, A. Heinze (Ed.), Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (vol. 2, pp. 321-328). PME.
- Garcia‐Mila, M., Gilabert, S., Erduran, S., & Felton, M. (2013). The effect of argumentative task goal on the quality of argumentative discourse. Science Education, 97(4), 497-523. https://doi.org/10.1002/sce.21057
- Godino, J., & Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos [Institutional and personal meaning of mathematical objects]. Recherches en Didactique des Mathématiques, 14(3), 325-355.
- Godino, J., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39(1), 127-135. https://doi.org/10.1007/s11858-006-0004-1
- Goizueta, M., & Planas, N. (2013a). El papel del contexto en la identificación de argumentaciones matemáticas por un grupo de profesores [The role of context in the identification of mathematical arguments by a group of teachers]. PNA, 7(4), 155-170.
- Goizueta, M., & Planas, N. (2013b). Temas emergentes del análisis de interpretaciones del profesorado sobre la argumentación en clase de matemáticas [Emerging themes from the analysis of teachers’ interpretations of argumentation in mathematics class]. Enseñanza de las Ciencias: Revista de Investigación y Experiencias Didácticas, 31(1), 61-78. https://doi.org/10.5565/rev/ec/v31n1.835
- Grossman, P. (1990). The making of a teacher: Teacher knowledge and teacher education. Teachers College Press.
- Habermas, J. (1999). Teoría de la acción comunicativa I. Racionalidad de la acción y racionalización social [Theory of communicative action I. Rationality of action and social rationalization]. Taurus Ediciones.
- Harada, E. (2009). Algunas aclaraciones sobre el “Modelo” Argumentativo de Toulmin [Some clarifications about Toulmin’s argumentative “Model”]. ContactoS, 73, 45-56.
- Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In E. Dubinsky, A. Schoenfeld, J. Kaput, F. Hitt, (Eds.), Research in Collegiate Mathematics Education VII (pp. 234-283). American Mathematical Society. https://doi.org/10.1090/cbmath/007/07
- Hill, H., Ball, D., & Schlling, S. (2008). Unpacking pedagogical content knowledge of students. Journal for Research in Mathematics Education, 39, 372-400.
- Hoyles, C., & Küchermann, D. (2002). Students’ understandings of logical implication. Educational Studies in Mathematics, 51, 193-223. https://doi.org/10.1023/A:1023629608614
- Jiménez-Aleixandre, M, & Pereiro Muñoz, C. (2002). Knowledge producers or knowledge consumers? Argumentation and decision making about environmental management. International Journal of Science Education, 24(11), 1171-1190. https://doi.org/10.1080/09500690210134857
- Jimenez-Aleixandre, M., & Erduran, S. (2007). Argumentation in science education: An overview. In S. Erduran & M. Jimenez-Aleixandre (Eds.), Argumentation in Science Education (Vol. 35, pp. 3-27). Springer. https://doi.org/10.1007/978-1-4020-6670-2_1
- Johnson, R. (2000). Manifest rationality. A pragmatic theory of argument. Lawrence Erlbaum Associates, Inc
- Jørgensen, C. (2007). The relevance of intention in argument evaluation. Argumentation, 21, 165-174. https://doi.org/10.1007/s10503-007-9044-0
- Kazemi, E., Ghousseini, H., Cordero-Siy, E., Prough, S., McVicar, E., & Resnick, A. F. (2021). Supporting teacher learning about argumentation through adaptive, school-based professional development. ZDM Mathematics Education, 53, 435-448. https://doi.org/10.1007/s11858-021-01242-5
- Knipping, C., & Reid, D. (2015). Reconstructing argumentation structures: A perspective on proving processes in secondary mathematics classroom interactions. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education. Advances in mathematics education. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9181-6_4
- Lakatos, I. (1978). Pruebas y Refutaciones: La lógica del descubrimiento matemático [Proofs and Refutations: The Logic of Mathematical Discovery]. Editorial Alianza.
- Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenges to western thought. Basic Books.
- Lakoff, G., & Nuñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. Basic Books.
- LeCompte, M., & Preissle, J. (1993). Ethnography and qualitative design in educational research (2nd ed.). Academic Press.
- Makar, K., Bakker, A., & Ben-Zvi, D. (2015). Scaffolding norms of argumentation-based inquiry in a primary mathematics classroom. ZDM, 47(7), 1107-1120. https://doi.org/10.1007/s11858-015-0732-1
- Manghi, D. (2010). Recursos semióticos del profesor de matemáticas: Funciones complementarias del habla y los gestos para la alfabetización científica escolar [Semiotic Resources of the Mathematics Teacher: Complementary Functions of Speech and Gestures for School Scientific Literacy]. Estudios Pedagógicos, 36(2), 99-115. https://doi.org/10.4067/S0718-07052010000200006
- McClain, K. (2009). When is an argument just an argument: The refinement of mathematical argumentation. In D. Stylianou, M. Blanton, & E. Knuth (Eds.), Teaching and learning proof across the grades: A K-16 perspective (pp. 222-234). Routledge. https://doi.org/10.4324/9780203882009-13
- McNeill, K., & Pimentel, D. (2010). Scientific discourse in three urban classrooms: The role of the teacher in engaging high school students in argumentation. Science Education, 94(2), 203-229. https://doi.org/10.1002/sce.20364
- Mendonça, P., & Justi, R. (2013). The relationships between modelling and argumentation from the perspective of the model of modelling diagram. International Journal of Science Education, 35(14), 2007-2034. https://doi.org/10.1080/09500693.2013.811615
- Mercer, N. (2009). Developing argumentation: Lessons learned in the primary school. In N. Muller Mirza, & A.-N. Perret-Clermont (Eds.), Argumentation and education. Springer. https://doi.org/10.1007/978-0-387-98125-3_7
- Metaxas, N., Potari, D., & Zachariades, T. (2016). Analysis of a teacher’s pedagogical arguments using Toulmin’s model and argumentation schemes. Educational Studies in Mathematics, 93, 383-397. https://doi.org/10.1007/s10649-016-9701-z
- Ministerio de Educación Nacional de Colombia MEN (1998). Lineamientos curriculares para matemáticas [Curriculum guidelines for mathematics]. Editorial Magisterio.
- Miyakawa, T. (2017). Comparative analysis on the nature of proof to be taught in geometry: the cases of French and Japanese lower secondary schools. Educational Studies in Mathematics, 94, 37-54. https://doi.org/10.1007/s10649-016-9711-x
- Molina, O., Font, V., & Pino-Fan, L. (2019). Estructura dinámica de argumentos analógicos, abductivos y deductivos: un curso de geometría del espacio como contexto de reflexión [Dynamic structure of analogical, abductive and deductive arguments: a course in geometry of space as a context for reflection]. Enseñanza de las Ciencias, 37(1), 93-116. https://doi.org/10.5565/rev/ensciencias.2484
- Muller, N., Perret-Clermont, A., Tartas, V., & Iannaccone, A. (2009). Psychosocial processes in argumentation. In N. Muller, & A. Perret-Clermont (Eds.), Argumentation and education: Theoretical foundations and practices (pp. 67-90). Springer. https://doi.org/10.1007/978-0-387-98125-3_3
- Nardi, E., Biza, I., & Zachariades, T. (2012). ‘Warrant’ revisited: Integrating mathematics teachers’ pedagogical and epistemological considerations into Toulmin’s model for argumentation. Educational Studies in Mathematics, 79(2), 157-173. https://doi.org/10.1007/s10649-011-9345-y
- Nielsen, J. (2011). Dialectical features of students’ argumentation: A critical review of argumentation studies in science education. Research in Science Education, 43(1), 371-393. https://doi.org/10.1007/s11165-011-9266-x
- Núñez, R. (2000). Mathematical idea analysis: What embodied cognitive science can say about the human nature of mathematics. In Proceedings of the 24th International Conference for the Psychology of Mathematics Education (Vol. 1, pp. 3-22). PME.
- Núñez, R., & Lakoff, G. (1998). What did Weierstrass really define? The cognitive structure of natural and epsilon-delta continuity. Mathematical Cognition, 4(2), 85-101. https://doi.org/10.1080/135467998387343
- Pedemonte, B. (2007). How can the relationship between argumentation and proof be analyzed? Educational Studies in Mathematics, 66, 23-41. https://doi.org/10.1007/s10649-006-9057-x
- Perelman, C. (1997). El imperio retórico: retórica y argumentación [The rhetorical empire: rhetoric and argumentation]. Grupo Editorial Norma.
- Perelman, C. (2007). Lógica formal y lógica informal [Formal logic and informal logic]. Praxis Filosófica, 25, 139-144.
- Perelman, C., & Olbrechts-Tyteca, L. (2006). Tratado de la argumentación: La nueva retórica [Treatise on argumentation: The new rhetoric]. Editorial Gredos.
- Pino-Fan, L., & Godino, J. (2015). Perspectiva ampliada del conocimiento didáctico-matemático del profesor [Extended perspective of the teacher’s didactic-mathematical knowledge]. PARADIGMA, 36(1), 87-109.
- Pino-Fan, L., Assis, A., & Castro, W. (2015). Towards a methodology for the characterization of teachers’ didactic-mathematical knowledge. EURASIA Journal of Mathematics, Science & Technology Education, 11(6), 1429-1456. https://doi.org/10.12973/eurasia.2015.1403a
- Pino-Fan, L., Assis, A., & Godino, J. (2015). Análisis del proceso de acoplamiento entre las facetas epistémica y cognitiva del conocimiento matemático en el contexto de una tarea exploratorio-investigativa sobre patrones [Analysis of the coupling process between the epistemic and cognitive facets of mathematical knowledge in the context of an exploratory-investigative task on patterns]. Educación Matemática, 27(1), 37-64. https://doi.org/10.24844/EM
- Pino-Fan, L., Godino, J., & Font, V. (2011). Faceta epistémica del conocimiento didáctico-matemático sobre la derivada [Epistemic facet of didactic-mathematical knowledge about the derivative]. Educação Matemática Pesquisa, 13(1), 141-178.
- Pino-Fan, L., Godino, J., & Font, V. (2016). Assessing key epistemic features of didactic-mathematical knowledge of prospective teachers: the case of the derivative. Journal of Mathematics Teacher Education, 21, 63-94. https://doi.org/10.1007/s10857-016-9349-8
- Pino-Fan, L., Godino, J., Font, V., & Castro, W. (2013). Prospective teacher’s specialized content knowledge on derivative. In B. Ubuz, Ç. Haser, & M. Mariotti (Eds.), Proceedings of the Eighth Congress of the European Society for Research in Mathematics Education (pp. 3195–3205). CERME.
- Reed, C., & Long, D. (1997). Multiple subarguments in logic, argumentation, rhetoric and text generation. In D. M. Gabbay, et al. (Eds.), Qualitative and Quantitative Reasoning (pp. 496-510). Springer Verlag. https://doi.org/10.1007/BFb0035644
- Reid, D., & Zack, V. (2011). Aspects of teaching proving in upper elementary school. In D. Stylianou, M. Blanton, & E. Knuth (Eds.), Teaching and Learning Proof across the Grades: a K-16 perspective (pp. 133-145). Routledge; National Council of Teachers of Mathematics. https://doi.org/10.4324/9780203882009-8
- Reid, D., Knipping, C., & Crosby M. (2011). Refutations and the logic of practice. PNA, 6(1), 1-10.
- Reiss, K., & Renkl, A. (2002). Learning to prove: The idea of heuristic examples. Zentralblatt für Didaktik der Mathematik, ZDM International Journal of Mathematics Education, 34(1), 29-35. https://doi.org/10.1007/BF02655690
- Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8(3), 255-281. https://doi.org/10.1007/s10857-005-0853-5
- Rumsey, C., Guarino, J., Gildea, R., Cho, C, & Lockhart, B. (2019). Tools to support K–2 students in mathematical argumentation. Teaching Children Mathematics, 25(4), 208-217. https://doi.org/10.5951/teacchilmath.25.4.0208
- Sampson, V., Enderle, P., Grooms, J., & Witte, S. (2013). Writing to learning to write during the school science laboratory: Helping middle and high school student develop argumentative writing skills as they learn core ideas. Science Education, 97(5), 643-670. https://doi.org/10.1002/sce.21069
- Schoenfeld, A., & Kilpatrick, J. (2008). Towards a theory of proficiency in teaching mathematics. In D. Tirosh, & T. L. Wood (Eds.), Tools and processes in mathematics teacher education (pp. 321-354) Sense Publishers. https://doi.org/10.1163/9789087905460_016
- Shinno, Y., Miyakawa, T., Iwasaki, H., Kunimune, S., Mizoguchi, T., Ishii, T., & Abe, Y. (2018). Challenges in curriculum development for mathematical proof in secondary school: Cultural dimensions to be considered. For the Learning of Mathematics, 38(1), 26-30.
- Shulman, L. (1986). Those who understand: Knowledge growth in Teaching. Educational Researcher, 15(2), 4-14. https://doi.org/10.3102/0013189X015002004
- Simpson, A. (2015). The anatomy of a mathematical proof: Implications for analyses with Toulmin’s scheme. Educational Studies in Mathematics, 90(1), 1-17. https://doi.org/10.1007/s10649-015-9616-0
- Soysal, Y. (2015). A critical review: Connecting nature of science and argumentation. Science Education International, 26(4), 501-521.
- Toulmin, S. (1958). The uses of argument. Cambridge University Press.
- Tristanti, L., Sutawidjaja, A., As’ari, A., & Muksar, M. (2015). Modelling student mathematical argumentation with structural-intuitive and deductive warrant to solve mathematics problem. In Proceeding of ICERD (pp. 130-139).
- Turiano, F., & Boero, P. (2019). Beyond direct proof in the approach to the culture of theorems: a case study on 10-th grade students’ difficulties and potential. In Eleventh Congress of the European Society for Research in Mathematics Education (No. 37). Freudenthal Group; Freudenthal Institute; ERM
- Van Dormolen, J. (1991). Metaphors mediating the teaching and understanding of mathematics. In J. Bishop, & S. Melling Olsen (Eds.), Mathematical knowledge: Its growth through teaching (pp. 89-106). Kluwer. https://doi.org/10.1007/978-94-017-2195-0_5
- Van Eemeren, F. H., Houtlosser, P., & Henkemans, A. (2007). Argumentative indicators in discourse: A pragma-dialectical study (Vol. 12). Springer Science & Business Media. https://doi.org/10.1007/978-1-4020-6244-5
- Van Eemeren, F., Grootendorst, R., & Henkemans, A (2006). Argumentación: análisis, evaluación y presentación [Argumentation: analysis, evaluation and presentation]. Biblos.
- Yackel, E., & Hanna, G. (2003). Reasoning and proof. In J. Kilpatrick, G. Martin, & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 22-44). National Council of Teachers of Mathematics.
How to cite this article
APA
Castro, W. F., Durango-Urrego, J. H., & Pino-Fan, L. R. (2021). Preservice Teachers’ Argumentation and Some Relationships to Didactic-Mathematical Knowledge Features. Eurasia Journal of Mathematics, Science and Technology Education, 17(9), em2002. https://doi.org/10.29333/ejmste/11139
Vancouver
Castro WF, Durango-Urrego JH, Pino-Fan LR. Preservice Teachers’ Argumentation and Some Relationships to Didactic-Mathematical Knowledge Features. EURASIA J Math Sci Tech Ed. 2021;17(9):em2002. https://doi.org/10.29333/ejmste/11139
AMA
Castro WF, Durango-Urrego JH, Pino-Fan LR. Preservice Teachers’ Argumentation and Some Relationships to Didactic-Mathematical Knowledge Features. EURASIA J Math Sci Tech Ed. 2021;17(9), em2002. https://doi.org/10.29333/ejmste/11139
Chicago
Castro, Walter F, John Henry Durango-Urrego, and Luis R Pino-Fan. "Preservice Teachers’ Argumentation and Some Relationships to Didactic-Mathematical Knowledge Features". Eurasia Journal of Mathematics, Science and Technology Education 2021 17 no. 9 (2021): em2002. https://doi.org/10.29333/ejmste/11139
Harvard
Castro, W. F., Durango-Urrego, J. H., and Pino-Fan, L. R. (2021). Preservice Teachers’ Argumentation and Some Relationships to Didactic-Mathematical Knowledge Features. Eurasia Journal of Mathematics, Science and Technology Education, 17(9), em2002. https://doi.org/10.29333/ejmste/11139
MLA
Castro, Walter F et al. "Preservice Teachers’ Argumentation and Some Relationships to Didactic-Mathematical Knowledge Features". Eurasia Journal of Mathematics, Science and Technology Education, vol. 17, no. 9, 2021, em2002. https://doi.org/10.29333/ejmste/11139